
An Access Control Framework for Business Processes for
Web Services∗

Hristo Koshutanski Fabio Massacci
Dip. di Informatica e Telecomunicazioni - Univ. di Trento

via Sommarive 14 - 38050 Povo di Trento (ITALY)
{hristo,massacci}@dit.unitn.it

ABSTRACT
Business Processes for Web Services are the new paradigm
for the lightweight integration of business from different en-
terprises.

Whereas the security and access control policies for ba-
sic web services and distributed systems are well studied
and almost standardized, there is not yet a comprehensive
proposal for an access control architecture for business pro-
cesses. The major difference is that business process de-
scribe complex services that cross organizational boundaries
and are provided by entities that sees each other as just part-
ners and nothing else.

This calls for a number of differences with traditional as-
pects of access control architectures such as

• credential vs classical user-based access control,

• interactive and partner-based vs one-server-gathers-all
requests of credentials from clients,

• controlled disclosure of information vs all-or-nothing
access control decisions,

• abducing missing credentials for fulfilling requests vs
deducing entailment of valid requests from credentials
in formal models,

• “source-code” authorization processes vs data describ-
ing policies for communicating policies or for orches-
trating the work of authorization servers.

Looking at the access control field we find good approxi-
mation of most components but not their synthesis into one
access control architecture for business processes for web
services, which is the contribution of this paper.

∗This work is partially funded by the IST programme of
the EU Commission, FET under the IST-2001-37004 WASP
project and by the FIRB programme of MIUR under the
RBNE0195K5 ASTRO Project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on XML Security, October 31, 2003, Fairfax VA, USA
Copyright 2003 ACM 1-58113-777-X/03/0010 ...$5.00.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, Information flow controls; H.3.5 [Information

Storage and Retrieval]: Online Information Services—
Commercial services, Web-based services; H.4.1 [Information

Systems Applications]: Office AutomationWorkflow man-
agement; K.4.4 [Computers and Society]: Electronic Com-
merceDistributed commercial transactions

General Terms
Management, Design, Security, Languages

Keywords
Web Services, Interactive Access Control, E-Business, Secu-
rity Management, Distributed Systems Security, Controlled
Disclosure.

1. INTRODUCTION
Middleware has been the enterprise integration buzzword

at the end of the past millennium. Nowadays a new paradigm
is starting to take hold: Web services (WS for short). Set-
ting hype aside, the major difference between middleware
solutions (CORBA, COM+, EJB, etc.) and WS is the idea
of lightweight integration of business processes from differ-
ent enterprises.

The security of basic WS is well studied and standard-
ized [6]. There are also many approaches [35, 37, 4, 16, 13,
5, 33] for controlling access to services and trust manage-
ment in distributed systems, and an advanced standardiza-
tion process for policies and access control (see for instance
the OASIS proposals [12, 26]). However, with the notable
exceptions of provisional access control [22] and trust nego-
tiation [36], access control models rest on the idea that the
server picks the evidence you sent on who you are (creden-
tials) and what you want (request), checks its evidence on
what you deserve (policies) and makes one-off decisions.

Moving up in the WS hierarchy from single services to or-
chestration and choreography of WS and business processes
the picture changes. Business processes describe complex
services that cross organizational boundaries and are pro-
vided by partners.

The paradigmatic example in the WS standards is a travel
agent WS that must orchestrate a combination of plane and
train tickets, car rental, hotel booking and insurance, each
service offered by different partner which may or may not be
involved according to the actual unrolling of the workflow.

For example consider the problem of going to a nice “Shake-
spearian Tour” in Italy: you might decide to go to the city
of Shylock, and from there rent a car and travel to Romeo
and Juliet’s last resort, to jump then on a train and visit the
Senate’s seat where Pompeous spoke after Caesar’s death.
However, you might as well decide to travel instead to Ger-
many first and then the train to Verona from there. In the
first case you might need to use a car rental company. The
second path may require to contact a German train company
for the schedule, which is not needed if you land directly in
Italy.

Let us now consider the problem of ”lightweight” creden-
tials such as the German train discount card or the car rental
gold member card. Should the user provide them anyway
at the beginning? Obviously not. Should the server orches-
trating the process require each partner to publish its policy
on discounts? Obviously not.

Such problems are not simply problems of practicality, but
have major security implications:

1. Credential vs identity based access control – A WS
is something you publish on the Web for everybody
to use it, so its design should be fairly close to the
principles of trust management systems [5, 33];

2. Orchestrating vs combining – partners have different
security policies and are just partners and not part of
the same enterprise. They may not wish to disclose
their policies to the servent orchestrating the request.
So, we cannot simply combine the policies, we need to
orchestrate the request grant/deny/process of many
different policies/partners.

3. Interactive vs one-off access control – if partners have
different policies they might as well require different
credentials to a client. Privacy considerations make
gathering all potentially needed credentials from clients
difficult. Furthermore, this may simply be impossible.
An airline may want to ask confidential information
directly to its frequent fliers (e.g., confirmation of re-
ligious preferences for the food) and not to the Web
travel agent orchestrator of the process. This calls for
an interactive process in which the client may be asked
on the fly for additional credentials and may grant or
deny such requests1.

4. Abducing vs deducing credentials – in most classical
formal models of access control we deduce that a re-
quest is valid because it is entailed by the combination
of the policy and the set of available credentials. Here,
a partner must be able to infer the causes of some failed
request to ask the missing credentials to the client.
The corresponding logical process is no longer deduc-
tion but it is abduction. So we must have co-existence
of deduction (for deciding access and release of infor-
mation) and abduction (for explaining failed accesses).

5. Data vs source level communication – the choice of
format for messages is always rather complicated, as

1Note that the workflow may even take completely differ-
ent paths based on the results of interaction. For example a
rent-a-car operator may require a signed credit card number
plus a physical address. The client may deny such require-
ment and thus another operator may be chosen that only
asks for a credit card number.

it calls for the implementation of software that is able
to interpret its meaning. In a Business Process sce-
nario we no longer need messages, but just “mobile”
processes. A client will receive a business process so
that he can simply execute the source to obtain and
send the missing credential. An authorization server
can download a business process from a policy orches-
trator and obtain the desired authorization.

Looking at the access control field we find a good approxima-
tion of most components: we have proposals for combining
policies at the logical level [23, 34, 3] and at the architec-
tural level [26]. We have proposals for calculi for controlling
release of information [7], and procedures for trust negotia-
tions and communication of credentials [36], architecture for
distributed access control [12, 4, 35, 16, 24].

What is missing is a way to synthesize all these aspects
into one access control architecture for business processes of
WS, which is the contribution of this paper.

1.1 Plan of the Paper
In the next section we introduce some notion about WS

and Business Processes for WS. Then we present our archi-
tecture and discuss how the entire message passing scheme
can be implemented as “mobile” processes in XML. Sec-
tion 6 explains how we can use logical deduction and logical
abduction to build a firm foundation for the interactive pro-
cess of inferring disclosable credentials from access control
policies and from release policies. A brief discussion of re-
lated works concludes the paper.

2. A PRIMER ON WS AND BUSINESS PRO-
CESSES

A Web Service as defined by the standard [21] is “an in-
terface that describes a collection of operations that are
network-accessible through standardized XML messaging.
A Web service is described using a standard, formal XML
notion, called its service description. It covers all the details
necessary to interact with the service, including message for-
mats (that detail the operations), transport protocols and
location.”

The idea behind Web services is to encapsulate and make
available enterprise resources in a new heterogeneous and
distributed way.

The WS architecture, as defined by W3C [32], is divided
into five layers grouped into three main components - Wire,
Description, and Discovery (Figure 1). The Wire compo-
nent comprises the messaging and transport layers with the
SOAP protocol and the XML message format. Discovery
offers users a unified and systematic way to find, discover,
and inspect service providers over the Internet. There are
two standards proposed at this level - Universal Descrip-
tion, Discovery and Integration (UDDI) and Web Service
Inspection Language (WSIL).

Moving upward we found the Service Description layer
and the Business Process Orchestration layer. The service
description layer is responsible for describing the basic for-
mat of offered services (protocols and encodings, where a
service resides, and how to invoke it). The standard for
describing the communication details at this layer is Web
Service Description Language (WSDL).

The Business Process Orchestration layer is an extension
of the service model defined at the description layer. This

Figure 1: Web Services Technology Stack & Access

Control Issues

<process>

<sequence>

<receive partner="Customer"

portType="purchaseOrderPT"

operation="SendPurchaseOrder"

container="PO">

</receive>

<invoke partner="CreditBureau"

portType="CheckCreditPT"

operation="CheckCredit">

</invoke>

<invoke partner="shippingProvider"

portType="shippingPT"

operation="RequestShipping"

inputContainer="shipingRequest"

outputContainer="shippingInfo">

<source linkName="ship-to-invoice">

</invoke>

<reply partner="Customer"

portType="purchaseOrderPT"

operation="SendPurchaseOrder"

container="Invoice"/>

</sequence>

</process>

Figure 2: Example of BPEL4WS Process

layer is responsible for describing the behavior of complex
business and workflow processes. Intuitively, business pro-
cesses are graphs where each node represents a business ac-
tivity and primitive nodes are in WSDL. The recently re-
leased standard at this layer is the Business Process Execu-
tion Language for WS (BPEL4WS) [10].

The BPEL4WS primitive activities are the following:

<invoke> invoking an operation on some Web service;
<receive> waiting for an operation to be invoked by some-

one externally;
<reply> generating the response of an input/output opera-

tion;
<assign> copying data from one place to another.

More complex activities can be constructed by composition:

<sequence> - allows the developer to define an ordered se-
quence of steps;

<switch> - allows the developer to have branching;
<while> - allows the developer to define a loop;
<flow> - allows the developer to define that a collection of

steps has to be executed in parallel.

An example of compositions of services is shown in Fig-
ure 2: a buyer service is ordering goods from a seller service,
i.e. the buyer service invokes the order method on the seller

Figure 3: Cross-section view of the architecture

service, whose interface is defined using WSDL. The seller
service invokes a credit validation service to ensure that the
buyer can pay for the goods and after that continue by ship-
ping the goods to the buyer. The credit validation service
can take place at a credit bureau site in a separate security
domain. Notice that a number of partners participate in the
process that therefore crosses administrative boundaries.

The XML code shown in Figure 2 is a very brief example of
the scenario described above in the notations of BPEL4WS
primitives. The structure of the processing section is defined
by the <sequence> element, which states that the elements
contained inside are executed in this order. The node con-
tent is self explanatory.

3. ARCHITECTURE
Combining the traditional proposals for distributed access

control and the essential components used for Web services
we propose here a security architecture for orchestrating au-
thorization of Web Services Processes.

Figure 3 shows view of the architecture. A brief descrip-
tion of the entities is given below.

AttributeServer is responsible for providing group/role mem-
bership information as in [35, 37], for instance in the
form of membership and non-membership certificates.

RegistryServer is responsible for maintaining relations be-
tween services and service providers implementing a
particular service. When a Client requests the Registry-

Server for a specific service, the latter responds with
a list of ApplicationServers implementing the requested
service.

AuthorizationServer decouples the authorization logic from
the application logic. It is responsible for locating,
executing, and managing all needed PolicyEvaluators,
and returning an appropriate result to the Applica-

tionServer. Also it is responsible for managing all the
interactions with the Client.

PolicyEvaluator terminology borrowed from Beznosov et al
[4], is an entity responsible for achieving endpoint deci-
sions on access control (see Figure 3). All partners in-
volved in a business process are likely to be as different
entities, each of them represented by a PolicyEvaluator.

PolicyOrchestrator from the authorization point of view
is an entity responsible for the workflow level access
and release control. It decides which are the partners
that are involved in the requested service (Web service
workflow) and on the base of some orchestration secu-
rity policies to combine the corresponding PolicyEval-

uators in a form of a Web process (Policy Composition

Process) that is suitable for execution by the Autho-

rizationServer.

Figure 4 shows an horizontal view of the same architecture
with multiple servers.

To secure the entire architecture we must make some as-
sumptions on the security properties of the lower levels. At
transport level we assume the adoption of the WS-Security
specification [6] that describes enhancements to SOAP mes-
saging to provide message integrity, confidentiality, and au-
thentication. For the message level one can use the W3C
and IETF specification for XML-Signature [25] and W3C
XML-Encryption [14], or the recently release specifications
by IBM and Microsoft for WS secure conversations [18, 19].

One of the advantages of using BPEL4WS is that it is pos-
sible to implement the entire architecture using BPEL4WS.
In this framework, each component is a business process that
communicate with others via web services2 We plan to use
the BPEL generator Collaxa for a sophisticated implementa-
tion that includes also the actual verification of credentials3.

At this stage one may wonder why do we need a Policy-

Orchestrator at all. The AuthorizationServer could as well
contact all PolicyEvaluators on its own. Instead we have de-
cided to decouple the problem in two parts: deciding the au-
thorization process, and running it. The AuthorizationServer

runs the actual authorization process and thus queries all the
PolicyEvaluators that are needed. The entity burdened with
the task of deciding what authorization process should be
run is PolicyOrchestrator.

We free the AuthorizationServer from bothering about all
the details around connections between partners and Poli-

cyEvaluators, as well as, PolicyEvaluator’s description, loca-
tion, orchestration, etc. The PolicyOrchestrator is responsi-
ble for the Policy Composition Service: maintaining all rela-
tions between resources names (services) and policies, select-
ing which are the partners involved in the requested process
and combining the corresponding PolicyEvaluators (as men-
tioned before) in a policy composition process and link them
to the workflow level access and release policies. This is pos-
sible because the AuthorizationServer can just download and
run a business process as we’ll discuss in the next section.

4. COMMUNICATION AS “MOBILE” PRO-
CESSES

Assuming security at lower level, the second key compo-
nent is the format of communications. We propose here a
major innovation: the typical exchange of messages in ac-
cess control system is at “data” level (credentials, policies,
requests, objects, etc.) that are interpreted by the recipi-
ents. This choice makes the actual implementation of pro-
posed access control infrastructure difficult and often not
easily portable. Here, we propose to exchange messages at
“source code” level and in particular at the level of business
process description. We advocate mobility of authorization
of business processes. It means that instead of sending just

2This creates a recursive problem of access control: if the the
PolicyEvaluator publishes its services as a web service, who
can access these services? For the time being we’ll swipe that
problem under the carpet, and assume that this is done by a
good old access list of authorized AuthorizationServer using
a suitable authentication mechanism at lower levels.
3At present credentials are just textual expressions and pub-
lic key operations are not performed.

messages that have to be interpreted by entities, we truly
have mobile processes passing from one entity to another
indicating themselves what the recipient has to do.

We have decided to use the term mobile process because
it well expresses the idea of using mobile code together with
the functionality of Web processes. The main advantages of
using mobile processes in our authorization framework are
flexibility and simplicity of entities. The recipient of mobile
process is not limited to the functions and computational
algorithms that the recipient’s logic predefines. Migrations
of actors in the system from one server to another is easier
with mobile processes and the system as a whole is more
flexible. Entities in the framework becomes simpler, having
little functionality pre-engineered into them.

Thus, a quick implementation of a server only needs an
off-the-shelf interpreter for business processes. Leading this
approach at an extreme the AuthorizationServer can simply
receive a business process from the orchestrator and execute
it. The process may still be computationally intensive as an
AuthorizationServer may have to process thousands or mil-
lions of authorization workflows, but it could be logically
very simple thus reducing the TCB to the simple execution
of certified processes from certified sources.

Another reason is that some PolicyEvaluators may decide
to disclose their XACML policies to the entity coordinating
the proposal and others PolicyEvaluators may instead decide
to offer an external interface, so that they just specify a con-
tainer for requests and an output container for its decision.
All intermediate choices are possible if we allow the Autho-

rizationServer just to follow an arbitrary business process as
certified by the PolicyOrchestrator.

5. INTERACTION WITH THE CLIENT
The next important step in advocating mobile processes

is to specify a language that is needed for coding them. We
have identified it as a language for communicating inter-
active requests back to a Client. This is even in the case
when a Client is an AuthorizationServer waiting for a response
either from a PolicyOrchestrator or from a PolicyEvaluator.
This language can be designed with a black box view of
the PolicyEvaluator but must be easily interpretable from
the Client side. Thus we propose to use BPEL4WS itself as
a language in which requests are coded. The PolicyEvalu-

ator/PolicyOrchestrator must represent its request as a WS
business process that can then be interpreted and executed
by the Client. If the PolicyEvaluator wants part of the re-
quest to be only visible to the Client it can use the available
XML-crypto features [25, 14] to protect the relevant part.

Loosely speaking we may say that the Client starts by
executing a simple <invoke>R</invoke> and obtain in re-
turn either its result or a more complicated process to ex-
ecute. For example a BPEL4WS interactive request may
specify a <input container> where to put a digitally signed
copy of the travel contract sealed with the public key of the
rent-a-car company (a process that can be specified as a
<sequence> of events).

The idea is intuitive and appealing but there is an essen-
tial detail that must be taken care of. Notably, the Autho-

rizationServer will receive a number of interactive requests
while controlling its workflow and the combination of these
requests and the service workflow specification is essential.
The simplest solution is to ignore such interaction: all in-
teractive requests are compiled into a <flow> and the result

Figure 4: Horizontal view of the architecture

is sent back to the Client. Such solution is hardly satisfac-
tory from the point of view of the Client: we often want
to know ”why” some additional information is needed. See
the example of Figure 2: at some stage somebody may ask
for a digitally signed declaration about our address. We
may consider this request fair enough from the shipping
agent, but not from the credit checking bureau. So, each
BPEL4WS interactive request is supplemented with a spe-
cial tag [root/context]:

• root requests will be compiled with a <flow> construct
and returned together with the overall result of the
computation for contextual requests;

• contextual requests the PolicyOrchestrator will make a
copy of the WS process (not the authorization pro-
cess) and replace each step S for which an additional
request I has been called with the request and a con-
text indicating the WS (partner and all) that required
the additional credential. The PolicyOrchestrator will
then prune the WS process removing all nodes that
were not on a path from the root to the newly modi-
fied nodes and sends the result to the Client.

The last step is necessary to protect the overall workflow
from unnecessary disclosure. Notice that the context work-
flow is not to be executed by the client. The client must only
execute the authorization workflow. So, to avoid complica-
tions, we have used a container where the context workflow
is stored for the client to see it, if he he wants to know why
certain credential are needed.

This combination is sufficiently adequate for most uses,
but still it offers the PolicyOrchestrator just the choice of
compiling individual requests rather than combining them.
Here we have identified an important point in the Policy-

Orchestrator where we need to introduce a new language - a
language for combination of policies and interactive requests
at workflow level. So far, we have not found a proposal that
is entirely satisfactory, part because there are not enough
case studies of WS Business Processes to guide the selection
of policies at workflow level.

The proposal by Bertino et al. [2], is fairly expressive
but only focuses on implementing snapshot constraints on a
workflow level (i.e. safety properties). So it is not possible
to express properties such as “if Y is repeatedly true then
eventually X should happen”.

The usage of algebraic constructs based on dynamic logic
proposed by Wijesekera and Jajodia [34] seems more promis-
ing. Indeed <invoke> operation would be mapped into sin-
gle action, <sequence> into sequential compounder, <switch>
into non deterministic choice (each case represented by a
test) and <flow> by intersection. This does not mean that
we would use dynamic logic for actual implementation4, but
rather that the logical language may offer a formal founda-
tion to policy written in BPEL4WS.

6. THE ABDUCTION OF MISSING CRE-
DENTIALS

For the deployment of the architecture, the PolicyEvalua-

tor must be able to determine the set of additional creden-
tial that are necessary to obtain a service in case of failure.
This problem may of course be shifted on the implementors
of PolicyEvaluators, as the architecture only needs that the

4This is less critical than prejudice may suggest. The ML
implementation of Peter Patel-Schneider at Bell-Labs can
actually crack significant dynamic logic theorems in millisec-
onds.

outcome of this derivation is mapped into some BPEL4WS
process that is then sent to the client.

However, there is no algorithm in either the formal or the
practical models of access control and trust negotiations to
derive such credentials from the access control policy. The
works on trust negotiations [29, 36] focus on communication
and infrastructure and assume that requests and counter
requests can be somehow calculated from the access policy.
The formal models on credential-based access control and
policy combination [2, 23, 15, 34] don’t treat the problem
of inferring missing credentials from failed requests, as they
are within the frame of mind of inferring successful requests
from present credentials. Also standardization efforts like
the XACML proposals [12] gives rules for deriving what is
right (evaluating policies) and not rule for understanding
what went wrong.

Also a recent proposal by Bonatti and Samarati [7] that
has the explicit focus on access and release control is too
preliminary and unsatisfactory. In a nutshell, the request
is received, the policy rules are filtered for relevance, the
relevant rules are partially evaluated and sent to the client.
The client will have to figure out which are the credentials
(this is not discussed in the paper), and then will evaluate
these credentials according its release policy.

The first problem is that demanding clients to analyse se-
curity policies is not acceptable here. We only assume an
interpreter of Business Processes on the client side (possi-
bly with some crytpo capabilities if some digital signatures
are needed), and thus all analysis of logical policies should
be performed elsewhere. The second problem is that after
a suitable number of queries the entire policy of the server
would be disclosed to the client or to the server orchestrating
the process. This is hardly acceptable from the perspective
of a WS business partner. Furthermore, the relevancy filter-
ing approach only works for flat policies, in which for every
request we list all its credentials. The relevancy selection
procedure in [7] is not correct already for the simple exam-
ple that we show in Figure 5.

The other key proposal on trust negotiation by Yu et
al. [36], offers a dual view w.r.t Bonatti and Samarati [7].
Loosely speaking, each credential is associated to a policy
(a boolean expression) denoting the credentials that a client
must have already provided for its safe disclosure, by a step
wise process the parties can exchange credentials or policy
rules (as in Bonatti and Samarati [7]) until the desired re-
source is released. The papers provide for safe sequences
of disclosure in a rather ad-hoc fashion building upon trees
rather than logical formalization. As a consequence they can
only treat monotone policies and it is not possible to define
notions of consistency of policies and disclosure of policies in
presence of constraints (e.g. separation of duty). The major
limitation of the paper is that it interlock the access and
the release policy into one. So, as the authors acknowledge
[36, page. 21], it is impossible to access resources if some
of the needed credentials cannot be disclosed at some point.
Furthermore, the need for intermediate credential disclosure
calls for a structuring of policy rules that is counter-intuitive
from the point of view of access control. For instance, a pol-
icy rules may say that for access to the full text of on-line
journal article we must have already got the access to brows-
ing the journal table of content, plus additional credentials.
Access to table of contents could then specify some simpler
set of credentials. For the disclosure process to take place

such natural composition is not possible when using Yu et
al. framework [36].

We propose a more general and principled approach based
on logic that allows for a clean solution of these problems.
For sake of simplicity (and popularity), assume that the pol-
icy is expressed using Datalog rules or logic programs with
the stable model semantics (if we need negation to imple-
ment some constraints like separation of duties). What we
need is a logical implementation of the following process:

1. the PolicyEvaluator receives the credentials and eval-
uates the request against the policy augmented with
the credentials i.e. whether the request is a logical
consequence of the policy and the credentials;

2. if the request is granted nothing needs to be done;

3. if the request fails we evaluate the given credential
against a release policy of the PolicyEvaluator to infer
which are the credentials whose need can be disclosed
on the basis of the credentials already received;

4. abduce the actually needed credentials by re-evaluating
the request against the policy and considering the po-
tentially disclosable credentials determined at the pre-
vious step; only the needed credential are communi-
cated to the client.

In a nutshell, what we need for the implementation of Poli-

cyEvaluator is to implement two main inference capabilities:
deduction and abduction [31]. We need to use deduction to
infer whether a request can be granted on the basis of the
present credentials as in [7, 2, 23, 15], we use abduction to
explain which minimum set of credentials would be neces-
sary to grant a failed request. Obviously it is not necessary
to use logic, what we claim is that the underlying logical
constructs that we need for our access decisions are these
two conceptually different operation.

Definition 6.1 (Access Control). Let PA be a strat-
ified logic program representing an access control policy, r be
an atom representing a request, C be a set of atoms repre-
senting a set of given credentials, then the request is granted
iff PR ∪ C |= r.

Definition 6.2 (Release Control). Let PR be a strat-
ified logic program representing a release control policy, d be
an atom representing a credential, C be a set of atoms rep-
resenting a set of given credentials, then the credential d is
disclosable iff PR ∪ C |= d.

The notion of release control subsumes the notion of ”pol-
icy” that is used by Yu et al. [36]. Indeed, a step of the
negotiation process by trust builder can now be explained
either as a successful entailment (the disclosure of a creden-
tial) or the disclosure of a logic rule.

Definition 6.3 (AC Failures Explanation). Let PA

and PR be a stratified logic programs representing respec-
tively an access control policy and a release control policy,
r be an atom representing a request, C be a set of atoms
representing a set of given credentials, an admissible expla-
nation(abduction) of missing credentials is any set of cre-
dentials CM such that

1. PA ∪ C 6|= r

2. PA ∪ C ∪ CM |= r

3. PA ∪ C ∪ CM is consistent

4. PR ∪ C |= c for all c ∈ CM

The first conditions says that the missing credentials are
indeed needed. The second condition says that they are
sufficient and the last condition says that they are actually
meaningful and don’t lead to inconsistency (say because of
separtion of duties). The last condition specify that cre-
dential must be disclosable. In presence of positive Datalog
program such as for Bonatti and Samarati’s logic [7], Li’s
Delegation Logic [23], Samarati et al. authorization frame-
work [30], the consistency condition is satisfied by default.
In presence of constraints on the execution or negation as
failure, as in Bertino et al. Datalog programs for workflow
policies [2] — which can be easily augmented with creden-
tials — the consistency condition is essential to guarantee
that the abduced set of atoms makes sense. Indeed, con-
straints could make PR ∪C ∪CM inconsistent and therefore
it would not make much sense to say that the request r

should be granted from a system.
In most definitions of abduction we also have constraints

on the minimality of the solution wrt some partial ordering.
Traditional requirements are minimality wrt set-containment
and set-cardinality. In presence of role hierarchies additional
ordering can be defined. These requirements make the prob-
lem harder than deduction from a computational complexity
point of view but are usually desirable form the view points
of simplicity of interaction and information-flow control. We
discuss this issue in details in another paper [20].

In Figure 5 is shown a sample policy of the university on-
line library access and release rules. The notations for decla-
rations, credentials, and services are borrowed from Bonatti
and Samarati [7]. Here decl means that it is a statement
(e.g., identity, address) declared by the client, while cred is
a statement declared and signed by a key corresponding to
some trusted authority. Rule 4 that says ”to have access to
service reading the client should have access to library (pre-
senting Id and some library card) and a loan library card”.
Rule 10 says ”to reveal the need for a loan library credential
there should be a declaration of the library’s Id and some
library credential”.

Notice that here is no way to disclose the need for a cre-
dential such as cred(card(user, john, id1568), bibK). Such
credential must be given. The same is true for the decla-
ration about the university employee id which cannot be
disclosed. However, the lack of a rule for disclosure of a cre-
dential does not forbid us to use the very same credential in
some access rule.

If the PolicyEvaluator is given the declaration decl(id1568)
and the credential cred(card(user, john, id1568), bibK), to-
gether with the request for reading the journal articles on-
line. The query serv(reading) does not follows from the
policy and the given declarations and credentials. So, we
apply the release policy and infer that the following creden-
tials are disclosable:

decl(john, cs),decl(id1568),
cred(researcher(id1568, cs), csK),

cred(card(user, john, id1568), bibK),
cred(member(john, cs), csK),

cred(card(loan, john, id1568), bibK).

The abduction algorithm derive two possible answers for the
credentials:

CM1 = {decl(john, cs), cred(member(john, cs), csK)}

CM2 = {cred(card(loan, john, id1568), bibK)}

Both sets are minimal with respect to the subset inclusion
ordering and only CM2 is minimal with respect to a set car-
dinality ordering. In case the first set is chosen the PolicyE-

valuator will compile a <flow> node for sending the requests
back to the client.

It could be possible to avoid the presence of the release
policy by adding an additional field to a credential that can
be requested. Each time any such credential would be re-
quired to be true in the logical evaluation of the policy, we
trigger an action sending the request to the client.

However, we believe that the separation of access and re-
lease policies is useful for practical reason in spite of the ad-
ditional complication that the two-policies system requires
for evaluation. The double query system is immaterial to
the human administrator who might simply buy a faster ma-
chine. In contrast, the specification of policies is normally
done by humans and is costly and error prone process. The
integration of release and access policy into one policy would
imply that a change in the release policy requires modifica-
tion to the access policy which might have been unchanged.
Furthermore the separation of access and release policies
allows for separation of duties among administrators: one
administrator can modify the access policy and another the
release policy.

The use of abduction of missing credential is sufficient
for the description of stateless business processes. Namely
for business processes in which only the set of credential
exhibited by the client is examined. If PolicyEvaluators store
past credentials (for instance to avoid that somebody takes
up two incompatible roles within a short time frame), it
is necessary to revise the access control process to allow
for the logical revocation of credentials. This is discussed
elsewhere [20].

7. CONCLUSIONS AND RELATED WORK
As we have already discussed, a number of access control

models have been proposed for workflows [2], web services
[27], and role based access control on the web [11, 28], SOAP
messages [8], entire XML documents [1, 9], tasks [17] and
DRM [27], possibly coupled by sophisticated policy com-
bination algorithms. However, they have mostly remained
within the classical framework. Even more liberal models
such as those for DRM based on usage [27] has assumed
that servers know their clients pretty well: they might not
know their names but they know everything about what,
when, and how can be used by these clients. We have dis-
cussed the proposals of Bonatti and Samarati [7] and Yu et
al. [36] more in details in Section 6.

If we look at the proposals for distributed access control
architectures [35, 37, 4, 16] the common thread is decoupling
access control logic from application logic, and possibly dis-
tribute the access control component. However we are still
within the same administrative boundaries.

For instance Woo and Lam [35] propose that the Appli-

cationServer offloads its authorization policy to an Autho-

rizationServer. After evaluating the policy the Authoriza-

Access Policy:

serv(query()) ← decl(Id), cred(card(Type, Name, Id), biblioK) (1)

serv(query(citations)) ← serv(access), cred(member(Name, Dept), KD), assoc(Dept, KD) (2)

serv(booking) ← decl(Name, Dept), cred(card(loan, Name, Id), biblioK) (3)

serv(reading) ← serv(access), cred(card(loan, Name, Id), biblioK) (4)

serv(reading) ← cred(academic(Name, UnivId),KU), assoc(university, KU) (5)

serv(reading) ← serv(query(citations)), cred(researcher(Name, Dept), KD), assoc(Dept, KD) (6)

Release Policy:

decl(Name, Dept) ← decl(Id) (7)

cred(researcher(Name, Dept), KD) ← decl(Name, Dept), cred(card(Type, Name, Id), bibK) (8)

cred(member(Name, Dept), KD) ← decl(Name, Dept) (9)

cred(card(loan, Name, Id), bibK) ← decl(Id), cred(card(Type, Name, Id), bibK) (10)

cred(academic(Name, UnivId),KU) ← decl(UnivId),decl(Name, Dept) (11)

Figure 5: University Library WS Access and Release Policies

tionServer hands out authorization certificate to the Client,
which the Client has to present along with its request.

An architecture close to ours has been proposed by Beznosov
et al. [4]. Authorizations are managed by an Authoriza-
tion Service, and its Access Decision Object (ADO). The
ADO obtains references to all PolicyEvaluators related to
the Client’s request, asks a decision combinator for combin-
ing decisions according to a combination policy, and returns
the decision back to the Client. Also the Akenti Policy En-
gine [16], the OASIS system [13], and the Adage system [37],
share the idea of an AuthorizationServer communicating with
application and various IdentityServers to obtain credentials
for the Client.

In comparison with the OASIS framework [12]: the Appli-

cationServer acts as PEP; the PolicyEvaluator acts partly as
PAP in the case of making available policies to the Authoriza-

tionServer and acts partly as PDP in taking authorization
decisions and providing them to the AuthorizationServer; the
AuthorizationServer acts partly as ”context handler” in re-
ceiving requests from the ApplicationServer and sending ac-
cess decisions back to it and in collecting attributes from an
AttributeServer. It acts partly as PDP in the case of taking
an authorization decision from policies returned by PolicyE-

valuators (acting as PAPs) and applying some rules on them;
the PolicyOrchestrator acts partly as ”context handler” in
requesting (giving a source to) the AuthorizationServer that
interprets the source and returns the result back to it. It
also acts partly as PDP in taking authorization decisions on
the base of applying some policies available on the workflow
level – acting in this case as PAP.

In most proposals, the possibility that servers may get
back to the calling Clients with some counter requests is not
considered. This even in the case where the Client is actu-
ally an AuthorizationServer querying different PolicyEvaluator

servers.
In this paper we have proposed a solution to address the

challenges of WS processes: a possible architecture for the
authorization of business processes for Web services. We
have identified an interactive access control model as a way
for protecting security interests wrt disclosure of informa-
tion and access control of both servers and clients. Logical

abduction is the solid semantical foundation upon which in-
teraction can be build.

In the model a Client interacts (contracts) with the servent
in order to finalize the necessary set of credentials needed to
satisfy all partners’ requirements related to the process. We
propose to use “mobile” processes as messages exchanged in
the architecture, and specified how entities in the architec-
ture can be implemented using WS processes themselves.

Future work is in the direction of studying the complexity
of the combined deduction and abduction process, for the
particular restricted policy that are typically used in formu-
lating workflow and WS security policies.

8. REFERENCES
[1] Bertino, E., Castano, S., and Ferrari, E. On

specifying security policies for Web documents with
an XML-based language. In Proc. of the Sixth ACM
SACMAT (2001), ACM Press, pp. 57–65.

[2] Bertino, E., Ferrari, E., and Atluri, V. The
specification and enforcement of authorization
constraints in workflow management systems. ACM
TISSEC 2, 1 (1999), 65–104.

[3] Bettini, C., Wang, X. S., and Jajodia, S. An
architecture for supporting interoperability among
temporal databases. In Temporal Databases: Research
and Practice (1998), vol. 1399 of LNCS, Springer
Veralag, pp. 36–55.

[4] Beznosov, K., Deng, Y., Blakley, B., Burt, C.,
and Barkley, J. A resource access decision service
for CORBA-based distributed systems. In Proc. of
15th IEEE Annual Computer Security Applications
Conference. (ACSAC ’99) (1999), IEEE Press,
pp. 310–319.

[5] Blaze, M., Feigenbaum, J., Ioannidis, J., and
Keromytis, A. D. The role of trust management in
distributed systems security. In Secure Internet
programming: security issues for mobile and
distributed objects. Springer-Verlag, 1999, pp. 185–210.

[6] Bob Atkinson, et al. Web Services Security
(WS-Security). IBM, Microsoft, VeriSign, April 2002.

http://www-
106.ibm.com/developerworks/webservices/library/ws-
secure/.

[7] Bonatti, P., and Samarati, P. A unified framework
for regulating access and information release on the
web. JCS 10, 3 (2002), 241–272.

[8] Damiani, E., di Vimercati, S. D. C., Paraboschi,
S., and Samarati, P. Fine grained access control for
SOAP E-services. In Proc. of the 10th WWW (2001),
ACM Press, pp. 504–513.

[9] Damiani, E., di Vimercati, S. D. C., Paraboschi,
S., and Samarati, P. A fine-grained access control
system for XML documents. ACM TISSEC 5, 2
(2002), 169–202.

[10] Francisco Curbera, et al. Business Process
Execution Language for Web Services (BPEL4WS).
BEA, IBM, Microsoft, 7 2002. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/.

[11] Giuri, L. Role-based access control on the web. ACM
TISSEC 4, 1 (2001), 37–71.

[12] Godik, S., and Moses, T. eXtensible Access Control
Markup Language (XACML). OASIS, February 2003.
www.oasis-open.org/committees/xacml/.

[13] Hine, J. A., Yao, W., Bacon, J., and Moody, K.
An architecture for distributed OASIS services. In
IFIP/ACM International Conference on Distributed
systems platforms (2000), Springer-Verlag New York,
Inc., pp. 104–120.

[14] Imamura, T., Dillaway, B., and Simon, E.
XML-Encryption Syntax and Processing. W3C,
December 2002.
http://www.w3.org/TR/xmlenc-core/.

[15] Jajodia, S., Samarati, P., Subrahmanian, V. S.,
and Bertino, E. A unified framework for enforcing
multiple access control policies. In Proc. of the 1997
ACM SIGMOD international conference on
Management of data (1997), ACM Press, pp. 474–485.

[16] Johnston, W., Mudumbai, S., and Thompson, M.
Authorization and attribute certificates for widely
distributed access control. In Proc. of Seventh IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET
ICE ’98) (1998), IEEE Press, pp. 340–345.

[17] Joshi, J. B. D., Aref, W. G., Ghafoor, A., and
Spafford, E. H. Security models for web-based
applications. CACM 44, 2 (2001), 38–44.

[18] Kaler, C., and Nadalin, A. Web Services Secure
Conversation (WS-SecureConversation). IBM and
Microsoft, 12 2002.
http://www.ibm.com/developerworks/library/ws-
secon/.

[19] Kaler, C., and Nadalin, A. Web Services Trust
Language (WS-Trust). IBM and Microsoft, 12 2002.
http://www.ibm.com/developerworks/library/ws-
trust/.

[20] Koshutanski, H., and Massacci, F. A logical
model for security of web services. Tech. Rep. IIT
TR-10/2003, First International Workshop on Formal
Aspects of Security and Trust (FAST), Istituto di
Informatica e Telematica, September 2003. Editors:
Theo Dimitrakos and Fabio Martinelli.

[21] Kreger, H. Web Services Conceptual Architecture
(WSCA 1.0), May 2001. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.

[22] Kudo, M., and Hada, S. XML document security
based on provisional authorization. In Proc. of the 7th
ACM CCS (2000), ACM Press, pp. 87–96.

[23] Li, N., Grosof, B. N., and Feigenbaum, J.
Delegation logic: A logic-based approach to
distributed authorization. ACM TISSEC 6, 1 (2003),
128–171.

[24] Li, N., Mitchell, J. C., and Winsborough, W. H.
Design of a role-based trust-management framework.
In Proc. of IEEE SS&P (2002).

[25] Mark Bartel, et al. XML-Signature Syntax and
Processing. W3C, IETF, February 2002.
http://www.w3.org/TR/xmldsig-core/.

[26] OASIS Security Services TC. Security Assertion
Markup Language (SAML). OASIS, November 2002.
www.oasis-open.org/committees/security/.

[27] Park, J., and Sandhu, R. Towards usage control
models: beyond traditional access control. In Seventh
ACM SACMAT (2002), ACM Press, pp. 57–64.

[28] Park, J. S., and Sandhu, R. RBAC on the Web by
smart certificates. In Proc. of the fourth ACM
workshop on RBAC (1999), ACM Press, pp. 1–9.

[29] Roscheisen, M., and Winograd, T. A
communication agreement framework for
access/action control. In Proc. of the SS&P (1996),
IEEE Press, pp. 154–163.

[30] Samarati, P., Reiter, M. K., and Jajodia, S. An
authorization model for a public key management
service. ACM TISSEC 4, 4 (2001), 453–482.

[31] Shanahan, M. Prediction is deduction but
explanation is abduction. In Proc. of IJCAI ’89
(1989), Morgan Kaufmann, pp. 1055–1060.

[32] W3C. Web Services Architecture.
http://www.w3.org/TR/ws-arch.

[33] Weeks, S. Understanding trust management systems.
In IEEE SS&P-2001 (2001).

[34] Wijesekera, D., and Jajodia, S. Policy algebras for
access control the predicate case. In Proc. of the 9th
ACM CCS (2002), ACM Press, pp. 171–180.

[35] Woo, T. Y. C., and Lam, S. Designing a distributed
authorization service. In Proc. of 17th INFOCOM
(1998), vol. 2, IEEE Press, pp. 419–429.

[36] Yu, T., Winslett, M., and Seamons, K. E.
Supporting structured credentials and sensitive
policies through interoperable strategies for automated
trust negotiation. ACM TISSEC 6, 1 (2003), 1–42.

[37] Zurko, M., Simon, R., and Sanfilippo, T. A
user-centered, modular authorization service built on
an RBAC foundation. In Proc. of the IEEE SS&P
(1999), IEEE Press, pp. 57–71.

