
1

An Access Control System for Business Processes
for Web Services
Hristo Koshutanski Fabio Massacci

Dip. di Informatica e Telecomunicazioni - Univ. di Trento
via Sommarive 14 - 38050 Povo di Trento (ITALY)

{hristo,massacci}@dit.unitn.it

Abstract— Web Services and Business Processes for Web Ser-
vices are the new paradigms for the lightweight integration of
business from different enterprises.

Security and access control policies for Web Services protocols
and distributed systems are well studied and almost standardized,
but there is not yet a comprehensive proposal for an access
control architecture for business processes. The major difference
is that business processes describe complex services that cross
organizational boundaries and are provided by entities that sees
each other as just partners and nothing else.

This calls for a number of differences with traditional aspects
of access control architectures such as: credential vs. classical
user-based access control; interactive and partner-based vs. one-
server-gathers-all requests of credentials from clients; controlled
disclosure of information vs. all-or-nothing access control de-
cisions; abducing missing credentials for fulfilling requests vs.
deducing entailment of valid requests from credentials in formal
models.

Looking at the access control field we find good approximation
of most components but not their synthesis into one access control
architecture for business processes for web services, which is the
contribution of this paper.

I. I NTRODUCTION

Middleware has been the enterprise integration buzzword at
the end of the past millennium. Nowadays a new paradigm
is starting to take hold: Web Services (WS for short). Setting
hype aside, the major difference between middleware solutions
(CORBA, COM+, EJB, etc.) and WS is the idea of lightweight
integration of business processes from different enterprises.

Basic WS are well studied and standardized, for what
concerns access control and security. There are also many
approaches [1], [2], [3] for controlling access to services in
distributed systems, and an advanced standardization process
(see for instance the OASIS XACML [4] proposal). With
the notable exception of provisional access control [5] and
trust negotiation [6], access control models rest on the idea
that the server picks the evidence you sent on who you are
(credentials), and what you want (request), checks its evidence
on what you deserve (policies) and makes a decision.

Moving up in the WS hierarchy from single services to
orchestration and choreography of WS and business processes
the picture changes. Business processes describe complex
services that cross organizational boundaries and are provided
by partners.

This work is partially funded by the IST programme of the EU Commission,
FET under the IST-2001-37004 WASP project and by the FIRB programme
of MIUR under the RBNE0195K5 ASTRO Project.

The paradigmatic example in the WS standards is a travel
agent WS that must orchestrate a combination of plane and
train tickets, car rental, hotel booking and insurance, each
service offered by different partner which may or may not
be involved according to the actual unrolling of the workflow.

For example consider the problem of going to a nice
“Shakespearian Tour” in Italy: you might decide to go to
the city of Shylock, and from there rent a car and travel to
Romeo and Juliet’s last resort, to jump then on a train and
visit the Senate’s seat where Pompeous spoke after Caesar’s
death. However, you might as well decide to travel instead to
Germany first and then the train to Verona from there. In the
first case you might need to use a car rental company. The
second path may require to contact a German train company
for the schedule, which is not needed if you land directly in
Italy.

Let us now consider the problem of ”lightweight” creden-
tials such as the German train discount card or the car rental
gold member card. Should the user provide them anyway at the
beginning? Obviously not. Should the server orchestrating the
process require each partner to publish its policy on discounts?
Obviously not. Such problems are not simply problems of
practicality, but have major security implications:

1) Credential vs. identity based access control – A WS is
something you publish on the Web for everybody to use
it, so the system has to be close to trust management
systems [3];

2) Orchestrating vs. combining –partners have different
security policies andare just partnersand not part of
the same enterprise. They may not wish to disclose
their policies to the server orchestrating the request.
So, we cannot simply combine the policies, we need
to orchestrate the request grant/deny/process of many
different policies/partners.

3) Interactive vs. one-off access control – if partners have
different policies they might as well require different
credentials to a client. Privacy considerations make
gathering all potentially needed credentials from clients
difficult. Furthermore, this may simply be impossible.
An airline may want to ask confidential information di-
rectly to its frequent fliers (e.g., confirmation of religious
preferences for the food) and not to the Web travel agent
orchestrator of the process. This calls for an interactive
process in which the client may be asked on the fly
for additional credentials and may grant or deny such



2

requests1.
4) Abducing vs. deducing credentials – in most classical

formal models we deduce that a request is valid because
it is entailed by the combination of the policy and the
set of available credentials. Here, a partner must be
able to infer the causes of some failed request to ask
the missing credentials to the client. The corresponding
logical process is no longer deduction but it is abduction.
So we must have co-existence of deduction (for deciding
access and release of information) and abduction (for
explaining failed accesses).

5) Data vs. source level communication – the choice of
format for messages is always rather complicated, as it
calls for the implementation of software that is able to
interpret its meaning. In a Business Process scenario we
no longer need messages, but just “mobile” processes.
A client will receive a business process so that he can
simply execute the source to obtain and send the miss-
ing credential. An authorization server can download a
business process from a policy orchestrator and obtain
the desired authorization.

Looking at the access control field we find a good approxima-
tion of most components: we have proposals for combining
policies at the logical level [7], [8] and at the architectural
level [4]. We have proposals for calculi for controlling release
of information [9], and procedures for trust negotiations and
communication of credentials [6], architecture for distributed
access control [4], [2], [1].

What is missing is a way to synthesizeall these aspects into
one access control architecture for business processes of WS,
which is the contribution of this paper.

In the next section we introduce some notion about WS and
Business Processes for WS. Then we present our architecture
and discuss how the entire message passing scheme can be
implemented as “mobile” processes. Section V explains how
we can use logical deduction and logical abduction to build a
firm foundation for the interactive process of inferring disclos-
able credentials from access control policies and from release
policies. Next we discuss how everything can be implemented
using Business Process themselves. A brief discussion of
related works concludes the paper.

II. A PRIMER ON WS AND BUSINESSPROCESSES

A Web Service as defined by the standard2 is “an interface
that describes a collection of operations that are network-
accessible through standardized XML messaging. A Web
service is described using a standard, formal XML notion,
called itsservice description. It covers all the details necessary
to interact with the service, including message formats (that
detail the operations), transport protocols and location.”

1Note that the workflow may even take completely different paths based
on the results of interaction. For example a rent-a-car operator may require a
signed credit card number plus a physical address. The client may deny such
requirement and thus another operator may be chosen that only asks for a
credit card number.

2Web Services Conceptual Architecture (WSCA), http://www- 3.ibm.com/
software/solutions/webservices/pdf/WSCA.pdf

The idea behind Web services is to encapsulate and make
available enterprise resources in a new heterogeneous and
distributed way.

Fig. 1. Web Services Technology Stack & Access Control Issues

The WS architecture, as defined by W3C3, is divided
into five layers grouped into three main components - Wire,
Description, and Discovery (Fig. 1). TheWire component
comprises the messaging and transport layers with the SOAP
protocol and the XML message format.Discoveryoffers users
a unified and systematic way to find, discover, and inspect
service providers over the Internet. There are two standards
proposed at this level - Universal Description, Discovery and
Integration (UDDI) and Web Service Inspection Language
(WSIL).

Moving upward we found theService Descriptionlayer
and the Business Process Orchestrationlayer. The service
description layer is responsible for describing the basic format
of offered services (protocols and encodings, where a service
resides, and how to invoke it). The standard for describing the
communication details at this layer is Web Service Description
Language (WSDL).

The Business Process Orchestration layer is an extension of
the service model defined at the description layer. This layer
is responsible for describing the behavior of complex business
and workflow processes. Intuitively, business processes are
graphs where each node represents a business activity and
primitive nodes are in WSDL. The recently released standard
at this layer is the Business Process Execution Language for
WS (BPEL4WS)4.

The BPEL4WS primitive activities are the following:
<invoke> - invoking an operation on some Web service;
<receive> - waiting for an operation to be invoked by

someone externally;
<reply> - generating the response of an input/output

operation;
<assign> - copying data from one place to another.

More complex activities can be constructed by composition:
<sequence> - allows a developer to define an ordered

sequence of steps;

3W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch.
4BPEL4WS specification – http://www-106.ibm.com/developerworks/

webservices/library/ws-bpel/



3

<process>
<sequence>

<receive partner="Customer"
portType="purchaseOrderPT"
operation="SendPurchaseOrder"
container="PO">

</receive>
<invoke partner="CreditBureau"

portType="CheckCreditPT"
operation="CheckCredit">

</invoke>
<invoke partner="shippingProvider"

portType="shippingPT"
operation="RequestShipping"
inputContainer="shipingRequest"
outputContainer="shippingInfo">

<source linkName="ship-to-invoice">
</invoke>
<reply partner="Customer"

portType="purchaseOrderPT"
operation="SendPurchaseOrder"
container="Invoice"/>

</sequence>
</process>

Fig. 2. Example of BPEL4WS Process

Fig. 3. Cross-section view of the architecture

<switch> - allows a developer to have branching;
<while> - allows a developer to define a loop;
<flow> - allows a developer to define that a collection of

steps has to be executed in parallel.

An example of compositions of services is shown in Figure
2: a buyer service is ordering goods from a seller service,
i.e. the buyer service invokes the order method on the seller
service, whose interface is defined using WSDL. The seller
service invokes a credit validation service to ensure that the
buyer can pay for the goods and after that continue by shipping
the goods to the buyer. The credit validation service can take
place at a credit bureau site in a separate security domain.
Notice that a number of partners participate in the process
that therefore crosses administrative boundaries.

The XML code shown in Figure 2 is a very brief example
of the scenario described above in the notations of BPEL4WS
primitives. The structure of the processing section is defined
by the<sequence> element, which states that the elements
contained inside are executed in this order. The node contents
is self explanatory.

III. A RCHITECTURE

Combining the traditional proposals for distributed access
control and the essential components used for Web services
we propose here a security architecture for orchestrating
authorization of Web Services Processes. Figure 3 shows a
cross-section view of the architecture, whereas Figure 4 shows
a horizontal view of it. A brief description of the servers shown
in the figure is given below.

AttributeServer is responsible for providing group/role
membership information as in [1], for instance in

the form of membership and non-membership cer-
tificates.

RegistryServer is responsible for maintaining relations
between services and service providers implementing
a particular service. When aClient requests theReg-
istryServer for a specific service, the latter responds
with a list of ApplicationServers implementing the
requested service.

AuthorizationServer decouples the authorization logic
from the application logic. It is responsible for
locating, executing, and managingall neededPol-
icyEvaluators, and returning an appropriate result
to theApplicationServer. Also it is responsible for
managing all theinteractionswith the Client.

PolicyEvaluator terminology borrowed from Beznosov
et al [2], is an entity responsible for achieving
endpoint decisions on access control (see Figure 3).
All partners involved in a business process are likely
to be as different entities, each of them represented
by a PolicyEvaluator.

PolicyOrchestrator from the authorization point of view
is an entity responsible for the workflow level access
and release control. It decides which are the partners
that are involved in the requested service (Web
service workflow) and on the base of some orchestra-
tion security policies to combine the corresponding
PolicyEvaluators in a form of a Web process (Policy
Composition Process) that is suitable for execution
by theAuthorizationServer.

To secure the entire architecture we must make some
assumptions on the security properties of the lower levels. Ob-
viously we assume authentication, confidentiality, and message
integrity at the transport and message levels. So, we assume
that we have already in place the proposed standards.

At transport level we assume the adoption of the WS-
Security specification5 that describes enhancements to SOAP
messaging to provide message integrity, confidentiality, and
authentication. For the message level one can use the W3C
and IETF specification for XML-Signature6 and W3C XML-
Encryption7, or the recently release specifications by IBM and
Microsoft for WS secure conversations8.

Assuming security at lower level, the second key component
is the languages and format of communications. We propose
here a major innovation: the typical exchange of messages
in an access control system is at “data” level (credentials,
policies, requests, objects, etc.) that are interpreted by the
recipients. This choice makes the actual implementation of
proposed access control infrastructure difficult and often not
easily portable. Here we propose to exchange messages at
“source code” level and in particular at the level of business
process description. It means that instead of sending just
messages that have to be interpreted by entities, we truly have

5WS-Security – http://www-106.ibm.com/developerworks/webservices/library/
ws-secure

6XML-Signature – http://www.w3.org/TR/xmldsig-core
7XML-Encryption – http://www.w3.org/TR/xmlenc-core
8WS-SecureConversation – http://www.ibm.com/developerworks/library/

ws-secon



4

Fig. 4. Horizontal view of the architecture

mobile processes passing from one entity to another indicating
themselves what the recipient has to do.

The mobility of authorization processes has a number of
advantages. First of all a server simply needs an off-the-shelf
interpreter for business processes for a quick implementation.
Second we have more flexibility for describing the process
leading to an access control decision. SomePolicyEvaluators
may decide to disclose it XACML policies and therefore send
a mobile processes, which just describe the evaluation of the
policies along some XACML rules. OtherPolicyEvaluators
may instead decide to offer an external interface, so that they
just specify a container for requests and an output container
for its decision. All intermediate choices are possible so that
one can accommodate also provisional access control or the
interactive version that we advocate here.

Leading this approach at an extreme theAuthorization-
Server can simply receive a business process from the orches-
trator and execute it. The process may still be computationally
intensive as anAuthorizationServer may have to process
thousands or millions of authorization workflows, but it could
be logically very simple thus reducing the TCB to the simple
execution of certified processes from certified sources9.

The role of the PolicyEvaluator is to encapsulate the
connected with it partner’s specific access control model,
authorization policy, and requirements with their internal rep-
resentation, interpretation, and mechanisms for computing an
access decision and presenting it as a service using standard-
ized Web service interface (e.g., WSDL).

9Recall that we assume that authentication, integrity, and confidentiality are
assured at message and transport level.

The entity burdened with constructing the authorization
workflow (Figure 4) is thePolicyOrchestrator. The Policy-
Orchestrator functionality can be considered as having two
main tasks: first one, calledPolicy Composition Service, is
to select which are the partners involved in the requested
process and to combine the correspondingPolicyEvaluators
in a policy composition process, and return it back to the
AuthorizationServer. After the AuthorizationServer having
finished the execution of the policy composition process it
asks10 thePolicyOrchestrator for applying the workflow level
release policies over the results from the execution – the
second main task. The process of applying release control
polices, calledRelease Policy Service, captures how the final
authorization decision should be released to theClient.

IV. I NTERACTIVE COMMUNICATIONS AS “M OBILE”
PROCESSES

We have decided to use the termmobile processbecause
it well expresses the idea of using mobile code together with
the functionality of Web processes. The main advantages of
using mobile processes in our authorization framework are
flexibility and simplicity of entities. Flexibility because of
recipient of mobile process is not limited to the functions and
computational algorithms that the recipient’s logic predefines.
Migrations of actors in the system from one server to another
is easier with mobile processes and the system as a whole
is more flexible. Entities in the framework becomes simpler,

10This is the case if it is specified in the policy composition process, i.e.
depends on the security policies being applied in constructing the policy
composition process.



5

having little functionality pre-engineered into them, as we will
see in section VI.

The next important step in advocating mobile processes is
to specify a language that is needed for coding them. We
have identified it as alanguage for communicating interactive
requests back to aClient. This is even in the case when
a Client is an AuthorizationServer waiting for a response
either from aPolicyOrchestrator or from aPolicyEvaluator.
This language can be designed with a black box view of the
PolicyEvaluator, but must be easily interpretable from the
Client side. Thus we propose to use BPEL4WS itself as a
language in which requests are coded. ThePolicyEvalua-
tor/PolicyOrchestrator must represent its request as a WS
business process that can then be interpreted and executed by
the Client. If the PolicyEvaluator wants part of the request
to be only visible to theClient it can use the available XML-
crypto features to protect the relevant part.

Loosely speaking we may say that theClient starts by
executing a simple<invoke>R</invoke> and obtain in
return either its result or a more complicated process to
execute. For example a BPEL4WS interactive request may
specify a <input container> where to put a digitally
signed copy of the travel contract sealed with the public key
of the rent-a-car company (a process that can be specified as
a <sequence> of events).

The idea is intuitive and appealing but there is an essential
detail that must be taken care of. Notably, theAuthorization-
Server will receive a number of interactive requests while
controlling its workflow and the combination of these re-
quests and the service workflow specification is essential. The
simplest solution is to ignore such interaction: all interactive
requests are compiled into a<flow> and the result is sent
back to theClient. Such solution is hardly satisfactory from
the point of view of theClient: we often want to know ”why”
some additional information is needed. See the example of
Figure 2: at some stage somebody may ask for a digitally
signed declaration about our address. We may consider this
request fair enough from the shipping agent, but not from the
credit checking bureau. So, each BPEL4WS interactive request
must be supplemented with a special tag [root/context]:
• root requests will be compiled with a<flow> construct

and returned together with the overall result of the
computation for contextual requests;

• contextual requests thePolicyOrchestrator will make a
copy of the WS process (not the authorization process)
and replace each stepS for which an additional requestI
has been called with the request and a context indicating
the WS (partner and all) that required the additional
credential. ThePolicyOrchestrator will then prune the
WS process removing all nodes that were not on a path
from the root to the newly modified nodes and sends the
result to theClient.

The last step is necessary to protect the overall workflow from
unnecessary disclosure.

This combination is sufficiently adequate for most uses, but
still it offers thePolicyOrchestrator just the choice of compil-
ing individual requests rather than combining them. Here we
have identified an important point in thePolicyOrchestrator

where we need to introduce a new language - alanguage for
combination of policies and interactive requests at workflow
level. So far we have not found a proposal that is entirely
satisfactory, part because there are not enough case studies of
WS Business Processes to guide the selection of policies at
workflow level.

The proposal by Bertino et al. [10], is fairly expressive
but only focuses on implementing snapshot constraints on a
workflow level (i.e. safety properties). So it is not possible
to express properties such as “if Y is repeatedly true then
eventually X should happen”.

The usage of algebraic constructs based on dynamic logic
proposed by Wijesekera and Jajodia [8] seems more promis-
ing. Indeed <invoke> operation would be mapped into
single action, <sequence> into sequential compounder,
<switch> into non deterministic choice (each case repre-
sented by a test) and<flow> by intersection. This does not
mean that we would use dynamic logic for actual implementa-
tion11, but rather that the logical language may offer a formal
foundation to policy written in BPEL4WS.

V. THE ABDUCTION OF M ISSING CREDENTIALS

For the deployment of the architecture, thePolicyEvaluator
must be able to determine the set of additional credential
that are necessary to obtain a service in case of failure.
This problem may of course be shifted on the implementors
of PolicyEvaluators, as the architecture only needs that the
outcome of this derivation is mapped into some BPEL4WS
process that is then sent to the client.

However, there is no algorithm in either the formal or the
practical models of access control and trust negotiations to
derive such credentials from the access control policy. The
works on trust negotiations [11], [6] focus on communica-
tion and infrastructure and assume that requests and counter
requests can be somehow calculated from the access policy.
The formal models on credential-based access control and
policy combination [10], [7], [8] don’t treat the problem of
inferring missing credentials from failed requests, as they are
within the frame of mind of inferring successful requests
from present credentials. Also standardization efforts like the
XACML proposals [4] gives rules for deriving what is right
(evaluating policies) and not rule for understanding what is
wrong.

Here, we present an approach based on logic that allows for
a clean solution of these problems. For sake of simplicity (and
popularity), assume that the policy is expressed using Datalog
rules or logic programs with the stable model semantics (if we
need negation to implement some constraints like separation
of duties). What we need is a logical implementation of the
following process:

1) the PolicyEvaluator receives the credentials and eval-
uates the request against the policy augmented with
the credentials, i.e. whether the request is a logical
consequence of the policy and the credentials;

11This is less critical than prejudice may suggest. The ML implementation
of Peter Patel-Schneider at Bell-Labs can actually crack significant dynamic
logic theorems in milliseconds.



6

2) if the request is granted nothing needs to be done;
3) if the request fails we evaluate the given credential

against a release policy of thePolicyEvaluator to infer
which are the credentials whose need can be disclosed
on the basis of the credentials already received;

4) abduce the actually needed credentials by re-evaluating
the request against the policy and considering the poten-
tially disclosable credentials determined at the previous
step; only the needed credential are communicated to
the client.

In a nutshell, what we need for the implementation ofPoli-
cyEvaluator is to implement two main inference capabilities:
deductionand abduction [12]. We need to use deduction to
infer whether a request can be granted on the basis of the
present credentials as in [9], [10], [7], we use abduction to
explain which minimum set of credentials would be necessary
to grant a failed request. Obviously it is not necessary to use
logic, what we claim is that the underlying logical constructs
that we need for our access decisions are these two conceptu-
ally different operations.

Due to lack of space, here we just give the basic hint of the
formalization.

Definition 1 (Access Control):Let P be a datalog program
(or stratified logic program) representing an access control
policy, let r be an atom representing a request, letC be a set
of atoms representing a set of given credentials, therequest is
granted if and only if P ∪ C |= r.

Definition 2 (Release Control):Let P be a datalog pro-
gram (or stratified logic program) representing a release con-
trol policy, let d be an atom representing a credential, letC
be a set of atoms representing a set of given credentials, the
credentiald is disclosableif and only if P ∪ C |= d.

Definition 3 (Access Control Explanation):Let P be a dat-
alog program (or stratified logic program) representing an
access control policy, letr be an atom representing a request,
let C be a set of atoms representing a set of given credentials,
let DP ⊇ C be a set of atoms representing disclosable
credentials, anexplanation of missing credentialsCM ⊆ DP

such that
1) P ∪ C 6|= r
2) P ∪ C ∪ CM |= r
3) P ∪ C ∪ CM is consistent

The first conditions says that the missing credentials are indeed
needed. The second condition says that they are sufficient
and the last condition says that they are actually meaningful.
In presence of positive Datalog program such as for Bonatti
and Samarati’s logic [9] and Li’s Delegation Logic 1 [7],
the consistency condition is satisfied by default. In presence
of constraints on the execution or negation as failure, as in
Bertino et al. Datalog programs for workflow policies [10]
— which can be easily augmented with credentials — the
consistency condition is essential to guarantee that the abduced
set of atoms makes sense. Indeed, constraints could make
P ∪ C ∪ CM inconsistent and therefore it would not make
much sense to say that the requestr should be granted from
a system.

In Figure 5 is shown a logic program showing a university
online library access and release rules. The notations for dec-

Fig. 6. Client Application Process Diagram

larations, credentials, and services are borrowed from Bonatti
and Samarati [9]. Heredecl means that it is a statement
(e.g., identity, address) declared by the client, whilecred
is a statement declared and signed by a key corresponding
to some trusted authority. Consider rule 4 that says ”to have
access to servicereading the client should have access to
library (presenting Id and some library card) and a loan library
card”. Rule 10 says ”to reveal the need for a loan library
credential there should be a declaration of the library’s Id and
some library credential”.

If the PolicyEvaluator is given the declarationdecl(id1568)
and the credentialcred(card(user, john, id1568), bibK), to-
gether with the request for reading the journal articles on-line.
The queryserv(reading) does not follow from the policy and
the given declarations and credentials. So, we apply the release
policy and infer that the following credentials are disclosable:

decl(john, cs),decl(id1568),
cred(researcher(id1568, cs), csK),

cred(card(user, john, id1568), bibK),
cred(member(john, cs), csK),

cred(card(loan, john, id1568), bibK).

The abduction algorithm derive two possible answers for the
credentials:

CM1 = {decl(john, cs), cred(member(john, cs), csK)}
CM2 = {cred(card(loan, john, id1568), bibK)}
Both sets are minimal with respect to the subset inclusion
ordering and onlyCM2 is minimal with respect to a set
cardinality ordering. In case the first set is chosen thePol-
icyEvaluator will compile a <flow> node for sending the
requests back to the client.

VI. COMPONENTALGORITHMS AS BUSINESSPROCESSES

This section shows how we can describe entities in our
architecture and how they can communicate each other using
BPEL4WS specification.

TheClient process is shown in Figure 6. In the figure, after
the Client has requested theApplicationServer for getting
a serviceR, presenting its credentials, there are two cases:



7

Access Policy:

serv(query()) ← decl(Id), cred(card(Type, Name, Id), biblioK) (1)

serv(query(citations)) ← serv(access), cred(member(Name, Dept), KD), assoc(Dept, KD) (2)

serv(booking) ← decl(Name, Dept), cred(card(loan, Name, Id), biblioK) (3)

serv(reading) ← serv(access), cred(card(loan, Name, Id), biblioK) (4)

serv(reading) ← cred(academic(Name, UnivId), KU ), assoc(university, KU ) (5)

serv(reading) ← serv(query(citations)), cred(researcher(Name, Dept), KD), assoc(Dept, KD) (6)

Release Policy:

decl(Name, Dept) ← decl(Id) (7)

cred(researcher(Name, Dept), KD) ← decl(Name, Dept), cred(card(Type, Name, Id), bibK) (8)

cred(member(Name, Dept), KD) ← decl(Name, Dept) (9)

cred(card(loan, Name, Id), bibK) ← decl(Id), cred(card(Type, Name, Id), bibK) (10)

cred(academic(Name, UnivId), KU ) ← decl(UnivId), decl(Name, Dept) (11)

Fig. 5. University Library WS Access and Release Policies

Fig. 7. Application Server Process Diagram

Additional Request - in this case is returned a counter request
(a process), indicating what should be done by theClient.
After that locally is invoked a serviceDoAddRequestService
for executing the required process. Because of the while loop
again is requested the serviceR with the result of the process;
ResultOfOperation - in this case is returned the result of the
requested serviceR and theClient’s process finishes. The
ApplicationServer, after theClient’s request for accessing
the serviceR, asks theRegistryServer (step 1 in Figure 7)
for locating its AuthorizationService. After that the Autho-
rizationServiceis invoked along withClient’s credentials and
the requested serviceR for taking the authorization decision
(step 2 in Figure 7). Then we can switch between explicit

Grant/Deny response returned from theAuthorizationServer
in the case of which is executed or not the requested service
R and the results are returned back to theClient (step 4 in
Figure 7), or in the case of additional credentials is executed
the AddRequestService, which either executes some counter-
requirements that have to be presented to theClient or
redirects the entire request to theClient (step 4 in Figure 7).

TheAuthorizationServer process, shown in Figure 8, is the
following: after theAuthorizationServicehas been invoked by
the ApplicationServer the PolicyCompositionServicelocated
in thePolicyOrchestrator is invoked. The result of the service
invocation (step 1 in Figure 8) is a policy composition process
(e.g., BPEL4WS) indicating what should be done by theAu-
thorizationServer in order to be taken the final authorization
decision. After obtaining the process (step 2 in Figure 8), the
AuthorizationServer starts executing it, requesting all needed
PolicyEvaluators with respect to that process, i.e. some of
them in parallel, others in a sequence etc. Here the policy
composition process consists of a sequence indicating that first
the AuthorizationServer has to execute allPolicyEvaluators
relevant to the requested serviceR orchestrated in a specific
way (where the most intuitive structure is a<flow > one
indicating execution in parallel, as shown in Figure 8), and
after that executing theReleasePolicyServiceresponsible for
taking the final access decision. After finishing the policy
composition process, theAuthorizationServer returns the
final access decision to theApplicationServer (step 4 in
Figure 8).

VII. C ONCLUSIONS ANDRELATED WORK

As we have already discussed, a number of access control
models have been proposed for workflows [10], role based
access control on the web [13], entire XML documents [14],
[15], tasks [16], and DRM [17], possibly coupled by sophis-
ticated policy combination algorithms . However, they have
mostly remained within the classical framework where servers
know their clients pretty well: they might not know their names



8

Fig. 8. Authorization Server Process Diagram

but they know everything about what, when, and how can be
used by these clients.

In most proposals, the possibility that servers may get
back to the callingClients with some counter requests is not
considered. This even in the case where theClient is actually
an AuthorizationServer querying differentPolicyEvaluator
servers.

In one of the earliest work on distributed access control by
Woo and Lam [1] theApplicationServer offloads its autho-
rization policy to anAuthorizationServer. After evaluating
the policy theAuthorizationServer hands out authorization
certificate to theClient, which theClient has to present along
with its request.

An architecture close to ours has been proposed by
Beznosov et al. [2]. Authorizations are managed by an Autho-
rization Service, and its Access Decision Object (ADO). The
ADO obtains references to allPolicyEvaluators related to the
Client’s request, asks a decision combinator for combining
decisions according to a combination policy, and returns the
decision back to theClient.

In this paper we have proposed a solution to address the
challenges of WS processes: a possible architecture for the
authorization of business processes for Web services. We have
identified an interactive access control model as a way for
protecting security interests wrt disclosure of information and
access control of both servers and clients. Logical abduction
is the solid semantical foundation upon which interaction can
be build.

In the model aClient interacts (contracts) with the servent
in order to finalize the necessary set of credentials needed to
satisfy all partners’ requirements related to the process. We
propose to use “mobile” processes as messages exchanged in
the architecture, and specified how entities in the architecture

can be implemented using WS processes themselves.

REFERENCES

[1] T. Y. C. Woo and S. Lam, “Designing a distributed authorization
service,” in Proceedings of Seventeenth Annual Joint Conference of
the IEEE Computer and Communications Societies. INFOCOM, vol. 2.
IEEE Press, 1998, pp. 419–429.

[2] K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley, “A re-
source access decision service for CORBA-based distributed systems,”
in Proceedings of 15th IEEE Annual Computer Security Applications
Conference. (ACSAC ’99). IEEE Press, 1999, pp. 310–319.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The role
of trust management in distributed systems security,”Secure Internet
programming: security issues for mobile and distributed objects, pp.
185–210, 1999.

[4] S. Godik and T. Moses,eXtensible Access Control Markup
Language (XACML), OASIS, February 2003, www.oasis-
open.org/committees/xacml/.

[5] M. Kudo and S. Hada, “XML document security based on provisional
authorization,” inProceedings of the 7th ACM conference on Computer
and Communications Security. ACM Press, 2000, pp. 87–96.

[6] T. Yu, M. Winslett, and K. E. Seamons, “Supporting structured creden-
tials and sensitive policies through interoperable strategies for automated
trust negotiation,”ACM Transactions on Information and System Secu-
rity (TISSEC), vol. 6, no. 1, pp. 1–42, 2003.

[7] N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation logic: A logic-
based approach to distributed authorization,”ACM Transactions on
Information and System Security (TISSEC), vol. 6, no. 1, pp. 128–171,
2003.

[8] D. Wijesekera and S. Jajodia, “Policy algebras for access control the
predicate case,” inProceedings of the 9th ACM conference on Computer
and Communications Security. ACM Press, 2002, pp. 171–180.

[9] P. Bonatti and P. Samarati, “A unified framework for regulating access
and information release on the web,”Journal of Computer Security,
vol. 10, no. 3, pp. 241–272, 2002.

[10] E. Bertino, E. Ferrari, and V. Atluri, “The specification and enforcement
of authorization constraints in workflow management systems,”ACM
Transactions on Information and System Security (TISSEC), vol. 2, no. 1,
pp. 65–104, 1999.

[11] M. Roscheisen and T. Winograd, “A communication agreement frame-
work for access/action control,” inProceedings of the Symposium on
Security and Privacy. IEEE Press, 1996, pp. 154–163.

[12] M. Shanahan, “Prediction is deduction but explanation is abduction,” in
Proceedings of IJCAI ’89. Morgan Kaufmann, 1989, pp. 1055–1060.

[13] L. Giuri, “Role-based access control on the web,”ACM Transactions
on Information and System Security (TISSEC), vol. 4, no. 1, pp. 37–71,
2001.

[14] E. Bertino, S. Castano, and E. Ferrari, “On specifying security policies
for Web documents with an XML-based language,” inProceedings of
the Sixth ACM Symposium on Access control models and technologies.
ACM Press, 2001, pp. 57–65.

[15] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati,
“A fine-grained access control system for XML documents,”ACM
Transactions on Information and System Security (TISSEC), vol. 5, no. 2,
pp. 169–202, 2002.

[16] J. B. D. Joshi, W. G. Aref, A. Ghafoor, and E. H. Spafford, “Security
models for web-based applications,”Communications of the ACM,
vol. 44, no. 2, pp. 38–44, 2001.

[17] J. Park and R. Sandhu, “Towards usage control models: beyond tradi-
tional access control,” inSeventh ACM Symposium on Access Control
Models and Technologies. ACM Press, 2002, pp. 57–64.


