
When secur ity meets software engineer ing: A case of modelling

secure information systems ¨̈̈̈

Haralambos Mouratidis1*, Paolo Giorgini2, Gordon Manson1

1Department of Computer Science, University of Sheffield, England#

h. mour at i di s@uel . ac. uk, g. manson@dcs. shef . ac. uk

2Department of Information and Communication Technology,

University of Trento, Italy

paol o. gi or gi ni @di t . uni t . i t

Abstract. Although security is a crucial issue for information systems,

traditionally, it is considered after the definition of the system. This approach often

leads to problems, which most of the times translate into security vulnerabilities.

From the viewpoint of the traditional security paradigm, it should be possible to

eliminate such problems through better integration of security and software

engineering. This paper firstly argues for the need to develop a methodology that

considers security as an integral part of the whole system development process, and

secondly it contributes to the current state of the art by proposing an approach that

considers security concerns as an integral part of the entire system development

process and by relating this approach with existing work. The different stages of

the approach are described with the aid of a real-life case study; a health and social

care information system.

Keywords: Information system design, requirements analysis, security

engineering.

¨ This is an extended and revised version of the “ Integrating Security and Systems Engineering: towards the

Modeling of Secure Information Systems” paper presented at the 15th International Conference on Advanced
Information systems Engineering (CaiSE 2003) and published in Advanced Information Systems Engineering, J.
Eder and M. Missikiff (Eds.), Springer LNCS 2681, 2003.

* Corresponding Author
First author’s present address: School of Computing and Technology, University of East London, Barking Campus,

Longbridge Road, RM8 2AS, England. Telephone: +44(0) 208223 3315, Fax: +44 (0) 208223 2963

 2

1 Introduction

As information systems (IS) become more and more critical in every aspect of the

human society, from the health sector to military, so does the demand to secure these

systems. This is mainly because private information is stored in computer systems and

without security, organisations (and individuals) are not willing to share information or

even use the technology.

Consider, for example, a health and social care information system containing health

data of different individuals. Security in such a system, as in any health and social care

information system, is very important since security breaches might result in medical

history to be revealed, and revealing a medical history could have serious consequences

for particular individuals.

Software Engineers consider security as a non-functional requirement, but unlike

other non-functional requirements, such as reliability and performance, security has not

been fully integrated within the development lifecycle and it is still mainly considered

after the design of the system. However, security introduces not only quality

characteristics but also constraints under which the system must operate. Ignoring such

constraints during the development process could lead to serious problems [1], since

security mechanisms would have to be fitted into a pre-existing design, therefore

leading to design challenges that usually translate into software vulnerabilities [33].

We believe that security should be considered during the whole development process

and it should be defined together with the requirements specification. By considering

security only in certain stages of the development process, more likely, security needs

will conflict with functional requirements of the system. Taking security into account

along with the functional requirements throughout the development stages helps to limit

 3

the cases of conflict, by identifying them very early in the system development, and find

ways to overcome them. On the other hand, adding security as an afterthought not only

increases the chances of such a conflict to exist, but it requires huge amount of money

and valuable time to overcome it, once they have been identified (usually a major

rebuild of the system is needed).

However, current methodologies for IS development do not meet the needs for

resolving the security related IS problems [34], and fail to provide evidence of

integrating successfully security concerns throughout the whole range of the

development process.

There are at least two reasons for the lack of support for security engineering [20]:

1. Security requirements are generally difficult to analyse and model. A major

problem in analysing non-functional requirements is that there is a need to

separate functional and non-functional requirements yet, at the same time,

individual non-functional requirements may relate to one or more functional

requirements. If the non-functional requirements are stated separately from the

functional requirements, it is sometimes difficult to see the correspondence

between them. If stated with the functional requirements, it may be difficult to

separate functional and non-functional considerations.

2. Developers lack expertise for secure software development. Many developers,

who are not security specialists, must develop systems that require security

features. Without an appropriate methodology to guide those developers on the

development processes, it is likely that they will fail to produce effective

solutions [23].

 4

In this paper we present an approach that integrates security and systems engineering,

using the same concepts and notations, throughout the entire system development

process. This work falls within the context of the Tropos methodology [6, 8] in which

security requirements are considered as an integral part of the whole development

process.

The paper is structured as follows. Section 2 provides an introduction to the Tropos

methodology describing briefly the methodology stages and its concepts. Section 3

describes the security extensions to the Tropos methodology to enable it to model

security issues, whereas section 4 describes a health and social care information system

that is used as a case study throughout the paper. Section 5 illustrates how our approach

integrates security and systems engineering within the Tropos development process and

Section 6 relates our work to the literature by providing an overview of related work.

Finally, section 7 provides directions for future work and it concludes the paper.

2 Tropos methodology

Tropos is a development methodology tailored to describe both the organisational

environment of a system and the system itself. Tropos is characterised by three key

aspects [6, 28]. Firstly, it deals with all the phases of system requirements analysis and

system design and implementation2 adopting a uniform and homogeneous way.

Secondly, Tropos pays great deal of attention to the early requirements analysis that

precedes the specification of the perspective requirements, emphasising the need to

understand the how and why the intended system would meet the organisational goals.

This allows for a more refined analysis of the system dependencies, leading to a better

2 In this paper we do not consider the implementation stage. Readers interested in this stage can refer to [7].

 5

treatment not only of the system functional requirements but also of its non-functional

requirements, such as security, reliability, and performance [28]. Thirdly, Tropos is

based on the idea of building a model of the system that is incrementally refined and

extended from a conceptual level to executable artefacts, by means of a sequence of

transformational steps [5].

Tropos adopts the i* modelling framework [35], which uses the concepts of actors,

goals, tasks, resources and social dependencies for defining the obligations of actors

(dependees) to other actors (dependers). Actors have strategic goals and intentions

within the system or the organisation and represent (social) agents (organisational,

human or software), roles or positions (represent a set of roles). A goal represents the

strategic interests of an actor. In Tropos we differentiate between hard (only goals

hereafter) and soft goals. The latter having no clear definition or criteria for deciding

whether they are satisfied or not [35]. A task represents a way of doing something.

Thus, for example, a task can be executed in order to satisfy a goal. A resource

represents a physical or an informational entity while a dependency between two actors

indicates that one actor depends on another to accomplish a goal, execute a task, or

deliver a resource. Figure 1a shows the graphical representation of the above-

mentioned concepts.

Figure 1: Graphical Representation of Tropos Concepts

 6

Because of these concepts, in Tropos, the system (as well as its environment) is seen

as a set of actors, who depend on other actors to help them fulfil their goals. The type of

the dependency describes the nature of an agreement (called dependum) between

dependee and depender. Goal dependencies represent delegation of responsibility for

fulfilling a goal; softgoal dependencies are similar to goal dependencies, but their

fulfilment cannot be defined precisely; task dependencies are used in situations where

the dependee is required to perform a given activity; and resource dependencies require

the dependee to provide a resource to the depender. Figure 1b illustrates a graphical

representation of a goal dependency.

Tropos covers four main software development phases:

Early Requirements analysis, concerned with the understanding of a problem by

studying an existing organisational setting. The output of this phase is an organisational

model, which includes relevant actors, their respective dependencies and the security

constraints imposed to those actors.

Late requirements analysis, where the system-to-be is described within its

operational environment, along with relevant functions and security requirements; this

description models the system as a (small) number of actors, which have a number of

dependencies and security constraints. These dependencies define the system’s

functional requirements, while the security constraints define the system’s security

requirements.

Architectural design, where the system’s global architecture is defined in terms of

subsystems, interconnected through data and control flows. Within the framework,

subsystems are represented as actors and data/control interconnections are represented

as (system) actor dependencies. In addition, during this stage, different architectural

 7

styles are analysed taking into account security and other non-functional requirements

of the system and secure capabilities are identified and assigned to the different actors

of the system to satisfy the secure entities.

Detailed design, where each architectural component is further defined in terms of

inputs, outputs, control, and the security aspects analysed in the previous stages. For this

stage, Tropos is using elements of Agent Unified Modelling Language (AUML) [3] to

complement the features of i* .

3 The secur ity extensions

Although Tropos was not conceived with security on mind, a set of security concepts,

such as security constraint, secure entities and secure dependencies have been proposed

[25] to enable it to consider security aspects throughout the whole development process.

To enable developers to adequately capture security requirements the concept of

constraint [25] is introduced and it is extended it with respect to security. In addition,

the Tropos concepts of dependency, goal, task, resource, and capability are also

extended with security in mind. All these concepts are defined within the Tropos project

as secure entities.

In the context of our work, a security constraint is defined as a restriction related to

security issues, such as privacy, integrity and availability, of an information system that

it can influence the analysis and design of the system under development by restricting

some alternative design solutions, by conflicting with some of the requirements of the

system, or by refining some of the system’s objectives.

 8

A security constraint contributes to a higher level of abstraction, meaning that security

constraints do not represent specific security protocol restrictions3, which restrict the

design with the use of a particular implementation language. This higher level of

abstraction allows for a generalised design free of models biased to particular

implementation languages.

Moreover, the term secure entity is used within the context of our work to describe

goals, tasks, and resources related to the security of the system. In other words, a secure

entity represents a secure goal, a secure task or a secure resource.

Secure goals are introduced to the system to help in the achievement of a security

constraint. A secure goal does not particularly define how the security constraint can be

achieved, since (as in the definition of goal, see [35]) alternatives can be considered.

However, this is possible through a secure task, since a task specifies a way of doing

something [35]. Thus, a secure task represents a particular way for satisfying a secure

goal. For example, for the secure goal Authorise Access, we might have secure tasks

such as Check Password or Check Digital Signatures. A resource that is related to a

secure entity or a security constraint is considered a secure resource. For example, an

actor depends on another actor to receive some information and this dependency

(resource dependency) is restricted by a constraint Only Encrypted Info. All these

security-related concepts are graphically represented as illustrated in Figure 2.

Figure 2: Graphical representation of security-related concepts

3 Such security restrictions should be specified during the implementation of the system.

 9

The only difference in the representation of non-secure Tropos concepts and secure

concepts is an S (Security) within brackets that appears in the beginning of the security

concept description to indicate that the concept is related to the security of the

information system.

A secure dependency [25] introduces security constraint(s), proposed either by the

depender or the dependee in order to successfully satisfy the dependency. Both the

depender and the dependee must agree for the fulfilment of the security constraint in

order for the secure dependency to be valid. That means the depender expects from the

dependee to satisfy the security constraint(s) and also that the dependee will make an

effort to deliver the dependum by satisfying the security constraint(s).

Secure Tropos differentiates three different types of secure dependency:

· A Dependee Secure Dependency, in which the depender depends on the

dependee and the dependee introduces security constraint(s) for the

dependency.

· A Depender Secure Dependency, in which the depender depends on the

dependee and the depender introduces security constraint(s) for the

dependency.

· A Double Secure Dependency, in which the depender depends on the

dependee and both the depender and the dependee introduce security

constraints for the dependency.

To better understand the concept of secure dependency, consider a dependee secure

dependency where a Doctor (depender) depends on a Patient (dependee) to obtain

Health Information (dependum), and that the Patient imposes to the Doctor the

security constraint to share health information only if consent is obtained. Both the

 10

depender and the dependee must agree in this constraint (or constraints) for the secure

dependency to be valid. That means, the Doctor must satisfy the share health

information only if consent is obtained security constraint introduced by the Patient

in order to help in the achievement of the Obtain Health information secure

dependency. The different types of secure dependency are graphically illustrated in

Figure 3.

Figure 3: Secure Dependencies

4 Case Study

This section introduces the case study that will be used in the rest of this paper to

describe the security analysis process throughout the different stages of the Tropos

methodology.

We consider the electronic Single Assessment Process (eSAP) system [27], an

integrated health and social care information system for the effective care of older

people. Security is a very important factor in the development of the electronic single

(a) Dependee Secure Dependency

(b) Depender Secure Dependency

(c) Double Secure Dependency

 11

assessment process, since security of personal health information is considered a

priority by many health care unions in different countries of the world including

England. This is due to the fact that in cases where patients (in the case of the eSAP

older people) do not trust the security of the system, they will refuse to provide

complete information about their health and social care needs, and this could lead to

many problems such as wrong assessment of needs, which could lead to wrong care

plans.

Therefore privacy of health and social care information, such as the health and social

care plans used in the electronic single assessment process, is the number one security

concern in such a system. According to Good Medical Practice, patients have a right to

expect that you will not pass on any personal information, which you learn in the course

of your professional duties unless they agree. In addition to that, the English

government and health and social care unions have agreed that electronic health care

records should be at least as well protected as the paper ones.

Other important concerns are integrity and availability. Integrity assures that

information is not corrupted and availability ensures the information is always available

to authorised health and social care professionals. If assessment information is

corrupted or it is not available the care provided to the older people (in the case of the

eSAP) by the health and social care professionals will not be efficient or accurate.

Therefore, it is necessary to find ways to help towards the privacy, the integrity and the

availability of personal health and social care information.

It must be noticed that, in our example, many functionalities of the system are

omitted, since our aim is not to explore the complexity of the system, but rather to

demonstrate how the Tropos methodology integrates security and systems engineering.

 12

Throughout our case study, the security policy principles identified in [1] are used. In

addition, some more principles are added: (1) System Authorisation, only authorised

professionals and patients can access the system; (2) Access Control, each Care Plan

shall be marked with an access control list naming the people or groups who may read it

and append data to it. The system should prevent anyone not on the list from accessing

the record in any way; (3) Care Plan Opening, a professional may open a care plan with

themselves and the older person on the access control list. When an older person has

been referred, the professional might open a record with themselves, the older person,

and the referring professional on the access control list; (4) Control, only one of the

professionals (most likely the professional responsible for the older person) may alter

the control list, and add other professionals; (5) Information Flow, information derived

from care plan A may be appended to care plan B if and only if B’s Access control list

is contained in A’s; (6) Availability, the information must be available whenever a

person included in the access control list requires any information.

5 The Development Process

5.1 Ear ly Requirements

During the early requirements stage, the goals, dependencies and the security

constraints between the stakeholders (actors) are modelled with the aid of an actors’

diagram [28].

In such a diagram, actors (graphically represented as circles) are modelled together

with their goals (represented as ovals), soft-goals (represented as bubbles), their

 13

dependencies (represented as links between the actors indicating the dependum4) and

their security constraints (modelled as clouds).

In the actor’s diagram, imposed security constraints are expressed in high-level

statements.

For the eSAP case study, we consider the following actors (see Figure 4)

� Professional: the health and/or social care professional;

� Older Person: the Older Person (patient) that wishes to receive appropriate

health and social care;

� DoH: the English Department of Health;

� R&D Agency: a Research and Development Agency interested in obtaining

medical information;

� Benefits Agency: an agency that helps the older person financially.

Figure 4: Actors Diagram

4 For a reminder of the graphical representation of the Tropos concepts please refer to figure 1.

 14

The main goal for the Older Person actor is to Maintain Good Health5 and a

secondary goal is to Receive Appropriate Care. Since the Older Person cannot

guarantee either of those goals alone, they depend on the Professional to help them

satisfy them. In addition, the Older Person depends on the Benefits Agency to

Receive Financial Support. However, the Older Person worries about the privacy of

their finances so they impose a constraint to the Benefits Agency actor, to keep their

financial information private. The Professional depends on the Older Person to

Obtain OP (Older Person) Information. However one of the most important and

delicate matters for the Older Person is the privacy of their personal medical

information, and the sharing of it. Therefore, most of the times, the Professional is

imposed a constraint to share this information if and only if consent is obtained. On

the other hand, one of the main goals of the R&D Agency is to Obtain Clinical

Information in order to perform tests and research. To get this information the R&D

Agency depends on the Professional. However, the Professional is imposed a

constraint (by the Department of Health) to Keep Patient Anonymity.

When the stakeholders, their goals, the dependencies between them, and the security

constraints have been identified, the next step of this phase is to analyse in more depth

each actor’s goals and the security constraints imposed to them. In addition, secure

entities are introduced to help towards the satisfaction of the imposed security

constraints. In this example, since the paper is focused on the secure Tropos and not in

Tropos in general, we focus only in the analysis of the security constraints, and not in

the goal or task analysis of each individual actor.

To model this, goal diagrams are used. In a goal diagram, each actor is represented as

a dashed-line balloon within which the actor’s goals and dependencies are analysed.

5 It is captured as a soft goal since we cannot precisely define what “good health” means for different individuals.

 15

The nodes of the diagram represent goals, soft-goals, and/or tasks whereas the links

identify the different kinds of relationships between those nodes. Moreover, these links

can be connected with external dependencies (identified in the actor diagram) when the

reasoning of the analysis goes beyond the actor’s boundary [35].

The analysis of the security constraints starts by identifying which goals of the actor

they restrict. This case is known as security constraint assignment. The assignment

of a security constraint to a goal is indicated using a constraint link (a link that has the

“ restricts” tag). In addition, different alternatives can be considered for achieving the

goals and the security goals of the stakeholders. For example, during the early

requirements analysis (shown in Figure 4), the Professional actor has been imposed

two security constraints (Share Info Only If Consent Achieved and Keep Patient

Anonymity). By analyzing the Professional actor (as shown in Figure 5) we have

identified the Share Medical Info goal. However, this goal is restricted by the Share

Info Only If Consent Obtained constraint imposed to the Professional by the Older

Person. For the Professional to satisfy the constraint, a secure goal is introduced

Obtain Older Person Consent. However, this goal can be achieved with many

different ways, for example a Professional can Obtain the Consent Personally or

can Ask a Nurse to obtain the consent on their behalf. Thus a sub-constraint is

introduced, Only Obtain Consent Personally. This sub constraint introduces another

secure goal Personally Obtain Consent. This goal is divided into two sub-tasks

Obtain Consent by Mail or Obtain Consent by Phone. The Professional has also a

goal to Provide Medical Information for Research. However, the constraint Keep

Patient Anonymity has been imposed to the Professional, which restricts the Provide

 16

Medical Information for Research goal. As a result of this constraint a secure goal

is introduced to the Professional, Provide Only Anonymous Info.

Figure 5: Partial Analysis of the Professional Actor

5.2 Late Requirements

In the late requirements stage, the functional, security, and other non-functional

requirements for the system-to-be are described. The system-to-be is introduced as one

or more actors who have a number of dependencies with the other actors of the

organization (defined during the early requirements stage) and it (the system)

contributes to the goals of the stakeholders.

More specifically, from the security point of view, during the late requirements analysis

stage, security constraints are imposed to the system-to-be. These constraints are further

analysed and security goals and entities necessary for the system to guarantee the

security constraints are identified.

 17

In the presented case study, one of the main aims of the Department of Health is to

allow older people to get more involved in their care and also help professionals provide

more efficient care. For this reason, the Department of Health depends on the

electronic Single Assessment Process (eSAP) system to automate care.

Therefore, the eSAP system has been introduced as another actor that receives the

responsibility for the fulfilment of some of the goals identified during the early

requirements analysis for the actors of the system. In other words, some goals that the

actors of the system cannot fulfil or are better fulfilled by the eSAP system are

delegated to the eSAP System.

To satisfy all the delegated dependencies, the main goal of the eSAP system has been

identified as to Automate Care. By performing a means-end analysis, presented in

Figure 6, it was identified that for the eSAP System to fulfil the Automate Care goal,

the following sub-goals must be accomplished: Assist with Assessment Procedures,

Provide Older Person Information, Manage Care Plans and Schedule Meetings.

Each of those sub-goals can be furthered analysed employing means-end analysis.

For example, the Manage Care Plans goal can be accomplished with the fulfilment of

the Generate Care Plan, Manage Care Plan Updates, Provide Care Plan

Information, Manage Referrals and Identify Care Assistants sub-goals.

From the security point of view, and taking into consideration the security policy

(presented in the previous section) there are three main security constraints imposed, by

the desired security features of the system Privacy, Integrity and Availability, to the

eSAP’s main goal.

 18

Figure 6: eSAP analysis

These are Keep System Data Private, Keep Integrity of the Data and Maintain

Data Availability. In addition, the eSAP system must satisfy the Share Information

Only if Consent Obtained security constraint imposed to the eSAP by the secure

dependencies delegated by the other actors.

Each of these secure constraints can be satisfied with the aid of one or more secure

goals. For example, the Keep System Data Private security constraint can be fulfilled

by blocking access to the system, by allowing access only from a central computer, or

by ensuring system privacy. However, the two first contribute negatively to the

usability of the system, i.e. the system will be secure but it will not be used. On the

other hand, the Ensure System Privacy secure goal is considered the best solution

since it provides security to the system and it doesn’ t affect (dramatically) its usability.

Thus, for the eSAP to satisfy its security constraints the following secure goals have

been identified as shown in figure 6 Ensure System Privacy, Ensure Data Integrity,

 19

Ensure Data Availability and Ensure Consent has been Obtained. These can be

furthered analysed. For example, the Ensure System Privacy goal is further analysed

into the Perform Authorisation Checks and Perform Cryptographic Procedures

secure goals. Both of those goals must be fulfilled for the Ensure System Privacy

goal to be satisfied.

Each of those tasks can be achieved by considering different alternatives. For

example, in order to check authorisation different alternatives can be considered such

as check passwords, check biometrics or check digital signatures. An approach to

evaluate the different alternatives could be to use the measures of complexity and

criticality [13]. Complexity represents the effort required from an actor for achieving a

(security) task, while criticality represents how the (security) goals of the actor will be

affected if a (security) task is not achieved. Thus, by knowing how complex and how

critical the different alternatives are, we can decide which alternative is the best

solution.

5.3 Architectural Design

The architectural design phase defines the system’s global architecture. During

architectural design the first step is to identify the overall architectural organization by

selecting among alternative architectural styles6 using as criteria the non-functional

requirements of the system identified in the previous stage.

However, quality characteristics (non-functional requirements) are difficult to

measure since it is difficult to get empirical evidence during the design stages.

6 To avoid confusion we must note that architectural styles differ from architectures in that “ a style can be thought of

as a set of constraints on an architecture” [2, p. 25]

 20

Nevertheless, a technique is required to allow developers to reason about alternative

design solutions according to the security requirements of their system.

 For this reason, we have developed an analysis technique to enable developers to

select among alternative architectural styles using as criteria the non-functional

requirements of the multiagent system under development.

Our analysis process is based on an independent probabilistic model, which uses the

measure of satisfiability proposed by Giorgini et al. [14]. In our example, satisfiability

represents the probability that the non-functional requirement will be satisfied. Thus, the

evaluation results in contribution relationships from the architectural styles to the

probability of satisfying the non- functional requirements of the system identified in the

late requirements stage.

To express the contribution of each style to the satisfiability of each non-functional

requirement of the system, a weight is assigned. Weights take a value between 0 and 1.

For example, 0.1 means the probability that the architectural style will satisfy the non-

functional requirement is very low (the style is not suitable for satisfying the

requirement). On the other hand, a weight of 0.9 means the probability that the

architectural style will satisfy the non-functional requirement is very high (the style is

suitable for satisfying the requirement).

The analysis involves the identification of more specific non-functional requirements,

by refining the ones identified during the late requirements stage, and the evaluation of

different architectural styles against those requirements. It must be noticed that the

refinement of the security requirements took place during the late requirements analysis

with the identification of secure tasks, so from the security point of view, the alternative

architectural styles are evaluated against those tasks.

 21

In the eSAP system, the security of the system is one of the most important factors

and it is the criterion that will guide the selection process, in this example, for the

appropriate architectural style. As derived from the analysis of the eSAP, security is

decomposed to privacy, integrity and availability.

We consider two architectural styles for our analysis, a hierarchical style –

client/server - and a mobile code style -mobile agents. We decided to consider those

two since client/server is the most frequently encountered of the architectural styles for

network-based applications [11], while mobile agents form a growing and quite

different architectural style. In client/server style, a node is acting as a server that

represents a process that provides services to other nodes, which act as clients. The

server listens for requests upon the offered services. The basic form of client/server does

not constrain how application state is partitioned between client and server components

[11]. Client/server architectural style is also referred to by the mechanisms used for the

connector implementation such as Remote Procedure Call (RPC) [11]. RPC is

appropriate for client/server architectural styles since the client can issue a request and

wait for the server©s response before continuing its own processing. On the other side, in

mobile agents style, mobility is used in order to dynamically change the distance

between the processing and source of data or destination of results. The computational

component is moved to the remote site, along with its state, the code it needs and

possibly some data required to perform the task [11].

As shown in Figure 7, each of the two styles satisfies differently each of the non-

functional requirements of the system.

 22

Figure 7: Selecting amongst different architectural styles

For instance, the mobile agents style allows more scalable applications (weight 0.8),

because of the dynamic deployment of the mobile code. For example, a doctor wishes to

access a large number of medical information, filtered according to the content. In the

(pure) client/server architectural style (weight 0.4), the doctor would access the server

data (medical information) and all the retrieved information would be transferred to the

client. Then the filtering would be performed at the doctor site. In the mobile agents

architectural style, such a filtering can be performed in the server site, where redundant

information can be identified early and thus does not have to be transferred to the client.

The latter approach is more scalable since the required filtering is distributed and can be

performed close to the information sources.

As concluded from our analysis (illustrated in Figure 7), the client/server style

satisfies more the privacy requirements of the system than the mobile agents style. This

is mainly because mobility is involved in the mobile agents style. Therefore, although

protection of a server from mobile agents, or generally mobile code, is an evolution of

security mechanisms applied in other architectural styles, such as client/server; the

mechanisms focused on the protection of the mobile agents from the server cannot, so

 23

far, prevent malicious behaviour from occurring but may be able to detect it [15].

Consider for example, the Check Information Flow secure task of the eSAP. The

information flow property is more easily damaged by employing mobile agents (weight

0.4) since possible platforms that a mobile agent could visit might expose sensitive

information from the agent [15, 16]. In the case of the client/server style (weight 0.8)

sensitive information is stored in the server and existing well-proven security measures

could be taken to satisfy the information flow attribute.

On the other hand, the mobile agents style satisfies more, than the client/server style,

the availability requirements of the system. Consider for example the recoverability

secure task of the eSAP. The mobile agents style contributes with a weight of 0.8. This

is due to the fact that mobile agents adapt dynamically. Mobile agents can react to

changes in their environment and maintain an optimal configuration for solving a

particular problem [21].

From the integrity point of view, the client/server style contributes better than the

mobile agents style. In the mobile agents style mobility is involved and therefore

checking the integrity of the data becomes a more difficult task. This is because mobile

agents cannot prevent a malicious agent platform from tampering with their code, state

or data, but they can only take measures to detect this tampering [15, 16]. Moreover, in

the mobile agent style, the integrity of both the local and remote agent platforms must

be checked.

From the above, it can be concluded that the client/server styles contributes more

towards the privacy and integrity of the eSAP, whereas the mobile agents style

contributes more towards the availability.

 24

It is worth mentioning that the weights of the contribution links reported in figure 7,

of each architectural style to the different non-functional requirements of the system,

have been assigned after reviewing different studies [2,4], evaluations [11], and

comparisons [29] involving the architectural styles. We must also note that figure 7

represents a partial illustration of the comparison process. For example, we have

omitted, in order to keep the figure simple and easy to understand, the contributions and

the conflicts amongst the different non-functional requirements. For example, although

privacy contributes negative to the mobility requirement, this is not shown in the figure.

When the contribution weights for each architectural style to the different non-

functional requirements of the system have been assigned, the best-suited architectural

style is decided. This decision involves the categorization of the non-functional

requirements according to the importance to the system and the identification of the

architectural style that best satisfies the most important non-functional requirement

using a propagation algorithm, such as the one presented by Giorgini et al. [14].

In our example, privacy and integrity are more important (in the case of the eSAP)

than availability (most of the times, not real-time information is needed). As a result,

the client/server style has been chosen as the architectural style of the system

In the case that two or more non-functional requirements are of the same importance,

the presented approach can be integrated with other analysis techniques, such as the

SAAM [18], to indicate which architectural style is best suited for the system-to-be.

As mentioned by Castro et al. [8], an interesting decision that comes up during the

architectural design is whether fulfilment of an actor’s obligations will be accomplished

through assistance from other actors, through delegation, or through decomposition of

the actor into component actors. Thus, when various architectural styles have been

 25

evaluated, and one has been chosen, the next step of the architectural design stage

involves the introduction of new actors and their dependencies, as well as the

decomposition of existing actors into sub-actors and the delegation of some (security)

responsibilities from the existing actors to the introduced sub-actors.

In the presented example, the eSAP actor is decomposed, as shown in figure 8, to

internal actors and the responsibility for the fulfilment of the eSAP’s goals is delegated

to these actors.

Figure 8: eSAP decomposition

 For instance, the Evaluate Assessment Information goal is delegated to the

Assessment Evaluator, whereas the Provide Assessment Information goal is

delegated to the Assessment Broker. In addition, the Older Person Broker and the

Consent Manager actors have been introduced to the eSAP system to fulfil the

responsibility (identified during the late requirements analysis –see figure 6) of the

 26

eSAP system to satisfy the secure dependency Obtain Older Person Information

together with the Share Information Only if Consent Obtained security constraint.

Moreover, the eSAP delegates responsibility (see figure 8) for the fulfilment of the

Perform Authorisation Checks security goal to three new actors, the eSAP Guard

(delegated the Check Information Flow secure task), the Authenticator (delegated the

Check Authentication secure task), and the Access Controller (delegated the Check

Access Control secure task) as shown in figure 8.

In addition, the Tropos methodology introduces extended actor diagrams, in which

the new actors and their dependencies with the other actors are presented. Consider for

instance, the extended diagram with respect to the Assessment Evaluator actor, as

depicted in figure 9. The Assessment Evaluator has been delegated the responsibility

to satisfy the goal Evaluate Assessment Information. To fulfil this goal, the

Assessment Evaluator depends on two internal actors, the Assessment Analyser

and the Evaluation Synthesiser. The first is responsible for obtaining the

Assessment Information secure resource, identify the problems of the Older Person

according to the Assessment Information and provide the Problems to the

Evaluation Synthesiser. The latter is responsible for obtaining the Evaluation

Request, and the Problems and providing the Assessment Evaluation secure

resource to the actor requesting the information (in the presented analysis to the Social

Worker) after considering the Problems, the Available Professionals, the Required

Skills and the Proposed Actions resources.

 27

Figure 9: An example of an extended diagram

Each of those actors can be furthered decomposed to model more precisely the actor’s

goals and how the actor will achieve these goals. For instance, the Assessment

Synthesiser sub-actor of the Assessment Evaluator, can be furthered analysed as

shown in Figure 10. The main goal of the Assessment Synthesiser is to Provide an

Assessment Evaluation.

Figure 10: Analysis of the Assessment Evaluator

 28

To satisfy this goal, the Assessment Evaluator has to synthesise any information

related to the assessment. To achieve this, the Assessment Evaluator must obtain the

problems associated with the assessment, the proposed actions required to deal with the

identified problems, the skills required to carry out these actions, and the available

professionals that demonstrate the required skills. However, the Assessment

Evaluator cannot achieve these tasks without help. Therefore, the Assessment

Evaluator depends on the Assessment Analyser, the Actions Manager, the Skills

Manager and the Professional Database Manager respectively to satisfy the above

mentioned tasks.

The last step of the architectural design aims to identify capabilities for each of the

actors by taking into account dependency relationships of the actors. A capability

represents the ability of an actor of defining, choosing and executing a plan for the

fulfilment of a goal, given certain world conditions and in presence of a specific event

[28]. For example, the Assessment Evaluator should have capabilities such as get

assessment information, get proposed actions, and provide assessment evaluation.

However, the process of identifying capabilities for each actor has been extensively

described in the literature [6, 26, 28] and thus it is not described here.

From the security point of view, secure capabilities are introduced to the actors to

guarantee the satisfaction of the security constraints. A secure capability represents the

ability of an actor/agent to achieve a secure goal, carry out a secure task and/or deliver a

secure resource.

For example, as identified in the early requirements analysis, for the eSAP system to

satisfy the Ensure System Privacy secure goal, only encrypted data transfers across

the network should be allowed. Therefore, the Assessment Information resource sent

 29

from the Professional to the Assessment Analyser (as illustrated in figure 9) must be

encrypted. Because of this, the Professional actor should be provided with capabilities

to encrypt and decrypt data. Later in the detailed design, each agent’s capabilities are

further specified and then coded during the implementation phase

5.4 Detailed Design

During the detailed design each component of the system, identified in the previous

stages, is further specified. In Tropos the detailed design stage is based on the

specifications resulted from the architectural design stage, and the reasons for a given

component can be traced back to the early requirements analysis. In particular, from the

security point of view, during the detailed design the developers specify in detail the

actors’ capabilities and interactions taking into account the security aspects derived

from the previous steps of the analysis.

For the detailed design stage, Tropos adapts a subset of the AUML diagrams

proposed in [3]. These are:

· Capability Diagrams. We use AUML activity diagrams to model a (secure)

capability or a set of capabilities for a specific actor. In each capability diagram,

the starting state is represented by external events, activity nodes model plans,

transition arcs model events, and beliefs are modelled as objects. For instance, in

our case study, the Receive Assessment Evaluation capability (see figure 9)

of the Professional actor is illustrated in figure 11. The Professional receives

(external event – EE) the Assessment Evaluation from the eSAP System.

She/he then evaluates the Assessment Evaluation and either accepts it or

rejects it.

 30

Evaluate Assessment
Evaluation

Accept Assessment
Evaluation

Reject Assessment
Evaluation

IE: (Assessment Evaluation Valid) IE: (Assessment Evaluation Invalid)

EE: Receive (eSAP, Professional,Assessment Evaluation)

Figure 11: Capability diagram for the Receive Assessment Evaluation Capability

· Plan Diagrams. Plan Diagrams are used to further specify each plan node of a

capability diagram. Figure 12 illustrates the plan diagram for the Evaluate

Assessment Evaluation plan belonging to the capability depicted in the

diagram of figure 11. The plan is activated with the receipt of the Assessment

Evaluation from the Professional and it ends by deciding if the Assessment

Evaluation is valid or invalid (In addition the plan can be terminated if

Assessment Evaluation is not readable). The integrity of the Assessment

Evaluation is checked. If the check is successful the Assessment Evaluation

is received as Valid, else the Assessment Evaluation is considered Invalid

from the Professional.

 31

EE: Receive (eSAP, Professional,Assessment Evaluation)

Decrypt Assessment
Evaluation

Check
Integrity

Not Valid Assessment
Evaluation

Valid Assessment
Evaluation

Read Assessment
Evaluation

Not Encrypted

Integrity Check Failed

Assessment Evaluation not Readable

Figure 12: Plan diagram example

· Agent Interaction Diagrams. We apply in our case sequence diagrams

modelling agent Interaction Protocols as proposed by [2]. An example of an

Agent Interaction Diagram is shown in figure 13. This diagram illustrates

interactions (illustrated as arrow-lines) between the Professional, the eSAP

Guard, the Cryptography Manager and the Authenticator agents (graphically

illustrated as rectangles at the top of the diagram). The Professional sends a

system access request to the eSAP Guard. The eSAP Guard decrypts the

incoming request (with the aid of the Cryptography Manager) and checks if

the Professional has authentication clearance (with the aid of the

Authenticator).

However, it would be useful to denote under what constraints authentication

clearance and system access are granted. For our example, the Authenticator provides

 32

authentication clearance if the details of the Professional are valid, and the eSAP

Guard provides access to the eSAP system if authentication clearance is provided. To

indicate these constraints, we introduce security rules. These are similar to the business

rules that UML has for defining constraints on the diagrams. Graphically, security rules

are placed on Notes and attached to the related structure as shown in figure 13.

Professional eSAP Guard Cryptography
Manager

Authenticator

eSAP Access Request

Send Encrypted Request

Plain Text Request

Send Authentication Request

Ask for Authentication Details

Provide Authentication Details

Authentication Clearance

eSAP Access Reply

IF authentication Details
Valid then Provide
Clearance ELSE Reject
Authentication Clearance

IF Authentication
Clearance is
Provided then
Accept System
Access Request
ELSE Reject
System Access
Request

Figure 13: An example of an agent interaction diagram including security rule notation

6 Related Work

Literature provides only few approaches in considering security requirements as an

integral part of the whole software development process.

Chung applies a process-oriented approach [9] to represent security requirements as

potentially conflicting or harmonious goals and using them during the development of

 33

software systems. The proposed framework, which is called the NFR (Non-Functional

Requirements) framework, represents and uses security requirements as a class of non-

functional requirements and it allows developers to consider design decisions and relate

these decisions to the represented non-functional requirements.

Rohrig [30] proposes an approach to re-use existing business process descriptions for

the analysis of security requirements and the derivation of necessary security measures.

The proposed approach consists of four main steps. During the first step, the general

security objectives of the business process are defined, whereas during the second step

the security objectives of all the constructs, such as actors and artefacts, are examined.

The third step examines whether these specifications are consistent and during the

fourth step a list of necessary security measures for each process component is

generated.

In addition, Jurgens proposes UMLsec [17], an extension of the Unified Modelling

Language (UML), to include modelling of security related features, such as

confidentiality and access control. In his work, Jurgens uses four different UML

diagrams; class diagrams to ensure that exchange of data obeys security levels, state-

chart diagrams to prevent indirect information flow from high to low values within an

object, interaction diagrams to ensure correctness of security critical interactions

between objects and deployment diagrams to ensure that security requirements on

communication are met by the physical layer.

Lodderstedt et al. [22] also extend UML to model security. In their work, they present

a security modelling language called SecureUML [22]. They describe how UML can be

used to specify information related to access control in the overall design of an

 34

application and how this information can be used to automatically generate complete

access control infrastructures.

McDermott and Fox adapt use cases [23] to capture and analyse security

requirements, and they call the adaption an abuse case model [23]. An abuse case is

defined as a specification of a type of complete interaction between a system and one or

more actors, where the results of the interaction are harmful to the system, one of the

actors, or one of the stakeholders of the system [23].

Sindre and Opdahl [32] define the concept of a misuse case, the inverse of a use case,

which describes a function that the system should not allow. They also define the

concept of a mis-actor as someone who intentionally or accidentally initiates a misuse

case and whom the system should not support in doing so. In their approach security is

considered by analysing security related misuse cases.

The concept of obstacle is used in the KAOS framework [10] to capture undesired

properties of the system, and define and relate security requirements to other system

requirements. In this work, two set of techniques, based on a temporal logic

formalisation, are employed to reason about obstacles to the satisfaction of goals,

requirements, and assumptions elaborated in the requirements engineering process.

 These (above-mentioned) approaches provide a first step towards the integration of

security and software engineering and have been found helpful in modelling security

requirements. However, they only guide the way security can be handled within a

certain stage of the software development process. For example, McDermott and Fox’s

approach is used only during the requirements analysis, whereas Jurgen’s analysis take

place in a fairly low level and it is suited to a more operational analysis. In other words,

Jurgen’s approach is only applicable during the design stage.

 35

Differently than them, this paper proposes an approach that covers the whole

development process using the same concepts and notations. As mentioned in the

Introduction, considering security issues throughout the development process helps to

limit the cases of conflict, by identifying them very early in the system development,

and find ways to overcome them.

Moreover, some of the above mentioned approaches only deal with specific security

issues. For example, UMLSec is focused more in access control policies and how these

policies can be integrated into a model-driven software development process. Although

such an analysis is important, it is very specific and it is applicable only on the design

stage of the modelling process. In contrast, the approach presented in this paper

considers the whole range of security issues, from access control to authentication and

integrity.

In addition to the above approaches, existing formal methods [7, 31] support the

verification of a security protocol, which has already been specified [24]. However,

such approaches are only applicable by security specialists and cannot be easily applied

by software developers. On the other hand, the approach presented in this paper uses

concepts and notations derived mainly from the requirements engineering area and as a

result can be applied by software developers with minimum knowledge of security

engineering.

It is worth mentioning that the technique presented for the evaluation of the different

architectural styles, is similar to the evaluation process for organisational styles

proposed by Kolp et al. [19]. The main difference is that Kolp’s process is based on a

qualitative reasoning, while the technique proposed by this research is based on an

 36

independent probabilistic model, which uses the measure of satisfiability proposed by

Giorgini et al. [14].

7 Conclusions and future work

Although Security is an important issue in the development of information systems,

currently the common approach towards the inclusion of security within a system is to

identify security requirements after the definition of a system. However, as pointed

earlier, this approach leads many times to problems and systems full of security

vulnerabilities. It should be possible to eliminate such problems through the integration

of security concerns at every phase of the system development. To achieve this goal,

methodologies must provide developers (even those not expert on security) guidance

through a systematic process, which will integrate security and systems engineering at

every phase of the system development cycle.

The main contribution of this paper is the introduction of a process that integrates

security and systems engineering, using the same concepts and notations, in the entire

system development process. The integrated, in Tropos, security process is one of

analysing the security needs of the stakeholders and the system in terms of security

constraints imposed to the system and the stakeholders, identify secure entities that

guarantee the satisfaction of the security constraints and assign capabilities to the

system to help towards the satisfaction of the secure entities. The presented approach is

characterised by five key ideas. Firstly by considering the overall software development

process it is easy to identify security requirements at the early requirements stage and

propagate them until the implementation stage. This introduces a security-oriented

paradigm to the software engineering process. Secondly, Tropos allows a hierarchical

 37

approach towards security. Security is defined in different levels of complexity, which

allows the software engineer a better understanding while advancing through the

process. Thirdly, iteration allows the re-definition of security requirements in different

levels therefore providing a better integration with system functionality. Fourthly,

consideration of the organisational environment facilitates the understanding of the

security needs in terms of the security policy. In addition, functional and non-functional

requirements are defined together however a clear distinction is provided.

However, this work is by no means complete. Future work includes providing a

process to verify the security of the developed information systems during the design

stage and also applying our process to different case studies to refine it. We also aim to

integrate our extensions to the Formal Tropos [12] specification language to enable us

to formally evaluate it. The formal part of the work will also allow us to prove and

check the properties of the system.

References

1. Anderson R., “Security Engineering: A Guide to Building Dependable Distributed Systems” , Wiley

Computer Publishing, 2001

2. Bass L, Clements P., Kazman R., “Software Architecture in Practice” , SEI Series in Software

Engineering, Addison – Wesley, 1998.

3. Bauer B., Müller J., Odell J., “Agent UML: A Formalism for Specifying Multiagent Interaction” . In

Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge (eds), Springer,

Berlin, pp. 91-103, 2001.

4. Bosch J., “Design and Use of Software Architectures: adopting and evolving a product-line approach” ,

ACM Press, Addison – Wesley, 2000.

5. Bresciani P., Giorgini P., “The Tropos Analysis Process as Graph Transformation System” . In

Proceedings of the Workshop on Agent-oriented methodologies, at OOPSLA 2002, Seattle, WA,

USA, Nov, 2002.

 38

6. Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., Perini A., “TROPOS: An Agent-Oriented

Software Development Methodology” . In the Journal of Autonomous Agents and Multi-Agent

Systems. 2003. Kluwer Academic Publishers. In press.

7. Burrows M., Abadi M., Needham R., “A logic of authentication. In Proceedings of the Royal Society

of London A, 426, pp 233-271, 1989” .

8. Castro J., Kolp M., Mylopoulos J., “A Requirements-Driven Development Methodology,” In Proc. of

the 13th Int. Conf. On Advanced Information Systems Engineering (CAiSE’01), Interlaken,

Switzerland, June 2001.

9. Chung L., Nixon, B., “Dealing with Non-Functional Requirements: Three Experimental Studies of a

Process-Oriented Approach” , Proceedings of the 17th International Conference on Software

Engineering, Seattle- USA, 1995

10. Dardenne A., Van Lamsweerde A., Fickas S., “Goal-directed Requirements Acquisition. Science of

Computer Programming” , Special issue on 6th Int. Workshop of Software Specification and Design,

1991.

11. Fielding R.T., “Architectural Styles and the Design of Network-based Software Architectures” ,

Doctoral dissertation, University of California, Irvine, 2000

12. Fuxman A, Pistore M, Mylopoulos J., Traverso P., “Model Checking Early Requirements

Specification in Tropos” , Proceedings of the 5th Int. Symposium on Requirements Engineering, RE’

01, Toronto, Canada, August 2001

13. Garzetti M., Giorgini P., Mylopoulos J., Sannicolo F., “Applying Tropos Methodology to a real case

study: Complexity and Criticality Analysis” , in the Proceedings of the Second Italian workshop on

“WOA 2002 dagli oggetti agli agenti dall’ informazione alla conoscenza” , Milano, 18-19 November

2002

14. Giorgini P., Mylopoulos J., Nicchiarelli E., Sebastiani R., “Reasoning with Goal Models” , in the

Proceedings of the 21st International Conference on Conceptual Modeling (ER2002), Tampere,

Finland, October 2002.

15. Jansen W., Countermeasures for Mobile Agent Security, Computer Communications, Special Issue on

Advanced Security Techniques for Network Protection, Elsevier Science BV, November 2000.

16. Jansen W., Karygiannis T., Mobile Agent Security, National Institute of Standards and Technology,

Special Publication 800-19, August 1999.

17. Jürjens J., “Towards Secure Systems Development with UMLsec” , Fundamental Approaches to

Software Engineering (FASE/ETAPS) 2001, International Conference, Genoa 4-6 April 2001

 39

18. Kazman R., Abowd G., Bass L., Webb M., “SAAM: A Method for Analyzing the Properties of

Software Architectures” , Proceedings of ICSE-16, Sorrento –Italy, May, 1994.

19. Kolp M., Giorgini P., Mylopoulos J., “A Goal-Based Organizational Perspective on Multi-Agent

Architectures” , in the Proceedings of the 8th International Workshop on Agent Theories, architectures,

and languages (ATAL-2001), Seattle-USA, August 2001.

20. Lampson B., “Computer Security in the real world” , Annual Computer Security Applications

Conference 2000.

21. Lange D.B., Oshima M., “Seven Good Reasons for Mobile Agents” , Communications of the ACM,

Vol. 42, No 3, March 1999

22. Lodderstedt T., Basin D., Doser J., “SecureUML: A UML-Based Modelling Language for Model-

Driven Security” , in the Proceedings of the 5th International Conference on the Unified Modeling

Language, 2002.

23. McDermott J., Fox C., “Using Abuse Care Models for Security Requirements Analysis” , Proceedings

of the 15th Annual Computer Security Applications Conference, December 1999.

24. Meadows C., “A Model of Computation for the NRL protocol analyser” , Proceedings of the 1994

Computer Security Foundations Workshop, 1994.

25. Mouratidis H., Giorgini P., Manson G., Philp I., “A Natural Extension of Tropos Methodology for

Modelling Security” , In the Proceedings of the Agent Oriented Methodologies Workshop (OOPSLA

2002), Seattle-USA, November 2002.

26. Mouratidis H., Giorgini P., Manson G., Philp I., “Using Tropos Methodology to Model an Integrated

Health Assessment System” , Proceedings of the 4th International Bi-Conference Workshop on Agent-

Oriented Information Systems (AOIS-2002), Toronto-Ontario, May 2002

27. Mouratidis H., Philp I., Manson G., “Analysis and Design of eSAP: An Integrated Health and Social

Care Information System” , in the Proceedings of the 7th International Symposium on Health

Information Managements Research (ISHIMR2002), Sheffield, June 2002

28. Perini A., Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., “Towards an Agent Oriented

Approach to Software Engineering. In A. Omicini and M.Viroli, editors, WOA 2001 – Dagli oggetti

agli agenti: tendenze evolutive dei sistemi software, Modena-Italy, September 2001.

29. Puliafito A., Riccobene S., Scarpa M., ``Which paradigm should I use?: An analytical comparison of

the client-server, remote evaluation and mobile agents paradigms©©, IEEE Concurrency and

Computation: Practice & Experience, vol. 13, pp. 71-94, 2001.

 40

30. Rohrig S., “Using Process Models to Analyze Health Care Security Requirements” ,

International Conference Advances in Infrastructure for e-Business, e-Education, e-Science, and e-

Medicine on the Internet, January 2002, L©Aquila, Italy

31. Ryan P., Schneider S., Analysis and Design of Security Protocols, Pearson Professional Education,

2000

32. Sindre G., Opdahl A. L, “Eliciting Security Requirements by Misuse Cases” , Proceedings of TOOLS

Pacific 2000, November 2000.

33. Stallings W., “Cryptography and Network Security: Principles and Practice” , Second Edition,

Prentice-Hall 1999.

34. Tryfonas T., Kiountouzis E., Poulymenakou A. “Embedding security practices in contemporary

information systems development approaches” , Information Management & Computer Security, Vol 9

Issue 4, 2001, pp 183-197

35. Yu E., “Modelling Strategic Relationships for Process Reengineering” , PhD thesis, Department of

Computer Science, University of Toronto, Canada, 1995.

