
A comparative study on the re-documentation of existing software:
Code annotations vs. drawing editors

Marco Torchiano
Politecnico di Torino

Italy
marco.torchiano@polito.it

Filippo Ricca and Paolo Tonella
ITC-irst,Trento,

Italy
{ricca, tonella}@itc.it

Abstract

During software evolution, programmers spend a lot
of time and effort in the comprehension of the internal
code structure. Such an activity is often required because
the available documentation is not aligned with the
implementation, if not missing at all. In order to avoid
wasting the time devoted to this activity, programmers
can record the knowledge they have gained in the form of
multiple, structural views that address the specific aspects
of the system that they have considered.

Re-documentation of existing software through design
views can be achieved either using a drawing editor or
annotating the source code. In the first case, diagrams
are produced interactively, starting from the reverse
engineered information. In the second case, diagrams are
produced by an annotation processing tool.

Most of current reverse engineering tools fall into the
first case but they have serious limitations in the
information they can recover automatically and they
eventually require human intervention.

The aim of the empirical work reported in this paper is
the comparison of these two approaches, in order to
understand which is easier to use and which the current
limitations of both of them are.

Keywords: Reverse Engineering, Usability, UML, Code
Annotations.

1. Introduction

Program understanding has been reported as one of the
most difficult and time-consuming activities during
software evolution. Often the programmers who evolve a
given program are different from those who developed it,
so that it is difficult for them to get a picture of the
internal organization and to locate the code portions
affected by the requested change. Similar difficulties have
been observed even when the original developers are
involved in the evolution task after some time has passed
since the initial development.

When programmers face program understanding, they
demand for information about the internal structure of the
code. This kind of information helps them locate the
change and evaluate its impact. However, it often happens
that no documentation is available to support their activity
or that the available documentation is not aligned with the
implementation. Another typical scenario is one where the
available documentation does not address the
comprehension needs involved in the maintenance task at
hand. Alternative views and diagrams, with a different
focus and with different information shown would be
necessary.

In the scenarios described above, programmers usually
acquire knowledge about the given system by means of
code reading and by executing the program with
appropriate input sequences. The output of such a process
is an increased knowledge about the system. In order to
avoid that such a knowledge gets lost over time, thus
maximizing the return on investment, it must be stored
persistently in some format, such as a set of design
diagrams. To this aim, programmers have (at least) two
main options:

1. defining a set of diagrams that capture the
acquired knowledge, through a drawing editor;

2. annotating the source code, so that diagrams can
be eventually extracted from the code.

When going for the first option, programmers use some
design tool to draw the diagrams. Properties and
relationships that are relevant for the current evolution
task are displayed on such diagrams. This is obtained by
interacting with the design tool through a graphical user
interface. Currently most drawing tools are also able to
extract the basic information needed to produce the
diagrams from the code; however, there are serious
limitations to what can be extracted automatically, so
eventually the human intervention is mandatory.

A similar result can be obtained declaratively, by
specifying the relevant properties and relationships
directly in the source code, in the form of annotations.
Annotation processing tools can then generate the
diagrams from the annotated code.

Clearly, the drawing editor approach has the advantage

that the interaction with the tool is straightforward and
that there is immediate graphical feedback. On the other
hand, the code annotation approach is focused on the
declaration of what information should be displayed,
eliminating the problem of deciding how to actually
display it. An analogy can be drawn with the WYSIWYG
document editors (e.g. Microsoft Word) and the document
composition languages (e.g. LaTeX).

In this paper, we report the results obtained in the
execution of an empirical study in which a re-
documentation task was executed twice: once with a
drawing editor tool and another time using code
annotations. We collected feedback from the user in the
form of a questionnaire, including both closed questions
(ranging on an ordinal scale) and open questions with the
users’ comments on specific aspects of the task. The
drawing editor approach resulted to be the most preferred
and usable one, with no penalty on the quality of the
resulting diagrams. However, some threats to validity that
we have identified hint for the execution of further similar
studies in a different setting. For example, the age and
experience of the users (undergraduate students) might
have affected the results.

The paper is organized as follows: after describing the
two approaches being compared (Section 2), we give
details on the experimental design (Section 3). Then we
report and discuss the results (Section 4). Conclusions are
drawn at the end of the paper.

2. Recovery of design diagrams

Design Recovery is in general the process of analyzing
a software system to recreate meaningful design
abstractions. In the case of an Object-Oriented software
system, different useful views can be recovered by means
of Reverse Engineering tools. Among them, the class
diagram is the most important and most widely used. The
UML class diagram [7] shows the classes that compose a
system, the inter-class relationships and the properties of
each class. Available reverse engineering tools are able to
recover the class diagram from the target code but they
present some heavy limitations. To have a more accurate
and useful result the reverse engineering process cannot
be completely automatic: the human intervention is
necessary.

2 .1 Limitations of Reverse Engineering Tools

For a medium sized system (in the order of 20k Lines
Of Code, LOC) it is quite common to have 50-100
classes. A design diagram reverse engineered from the
code that shows them, even without displaying any
property, is completely unreadable for human beings,
whose cognitive abilities permit grasping information

related to about 7 objects at most [6]. There is about 1
order of magnitude that separates automatically recovered
information from actually usable diagrams. Two
mechanisms can be used to simplify the reverse
engineered diagrams: filtering and multiple-views. By
filtering, users specify which information is irrelevant and
can be skipped. When defining multiple views for a given
system, programmers decide which elements (classes,
fields, methods, etc.) belong to which view. While a class
may be meaningful to understand a given portion of a
system, it may be useless to include it inside other views.
Thus, each class contributes to one or more views, each of
which gives a partial but meaningful representation of the
system's organization.

The class properties that are shown in the
compartments associated with each class in the class
diagram include the class methods and attributes. While
some of these properties convey important information
about the class state and behavior, others may be
completely irrelevant (e.g., setter and getter methods,
transient attributes for temporary storage). A filtering
mechanism can be used to restrict the displayed
information to what gives a relevant contribution to
program understanding. Moreover, the information that
can be shown for each class property includes the attribute
visibility (public, protected, private, etc.) and type, and
the method visibility and signature. Not all these data are
helpful to program comprehension and suppression of
some of them may result in a clearer diagram.

Among the class relationships that are shown in a class
diagram, the most important ones are:

• Inheritance/realization: a class
extends/implements a class/interface.

• Aggregation/composition: a class is part of
another class.

• Association: a class holds a stable reference
toward another class.

• Dependency: a change in a class might impact
another class.

Dependency subsumes all the other relationships, and
association subsumes aggregation. It is also possible to
consider a special case of aggregation, called composition,
to which stronger constraints (such as same lifetime)
apply.

When recovered from the source code, inheritance and
realization are easily identified at the syntactic level. Once
implemented, aggregation, association and composition
are almost indistinguishable, thus they are usually unified
into the association, which subsumes all of them, by
available reverse engineering tools. An association
(inclusive of aggregation and composition) is recovered
from the code when a class attribute references an object
of another class, being a pointer (Java reference) or a
container, such as a list, a hash table, or an array. A
dependency (excluding inheritance and association) can

be detected when a temporary reference (e.g., local
variable, method parameter) is used to access another
class.

Given the semantic ambiguity in the definition of
aggregation (and composition) with respect to association,
additional input may be needed to discriminate among
them. Moreover, a class diagram with even as few as 5-10
elements becomes quickly unreadable if all relationships
of all kinds are shown. Thus, filtering should be applied to
relationships as well.

A limitation in the reverse engineering of relationships
from the code is multiplicity. Statically, it is in general
undecidable the number of objects involved in a given
relationship between two classes. Another limitation is the
impossibility to recover the relation name and the source
role, while the target role can be approximated by the
name of the reference variable used to implement the
given relationship.

A problem with associations and dependencies is that
the target class of such relationships is not always
available in the source code. For example, if a variable
implementing an association or a dependency is declared
of interface type, the actually referenced class cannot be
determined from the declaration. Similarly, when weakly
typed containers are used, the actual class of the contained
objects is not known. Although sophisticated algorithms
can be used to approximate the concrete type of the
referenced/contained objects [13], a precise solution may
be not computable in the presence of incomplete systems.

Tagged values, constraints, properties and comment
notes that may enrich a design diagram with important
semantic information cannot be recovered automatically
from the code and must be provided externally.

As we have seen, to overcome the limitations of
reverse engineering tools described above and to refine
the default display options into more useful ones the
human intervention is essential. To improve the result of
the class diagrams produced there are two chances:
working at the level of the code and adding code
annotations that “help” Reverse Engineering tools
produce better results or modifying directly the diagrams
produced by the tools, by means of a drawing-editor.

2 .2 The code annotation approach

In this approach the user has to add manually
annotations to the code. The annotations drive the Reverse
engineering tool in the production of more useful and
accurate diagrams.

The annotations that we have used in this experiment
are an extension of those proposed by Spinellis [11]. They
are described with reference to the Java programming
language and respect the Javadoc syntax of the
annotations (i.e. an '@' precedes the name of the

annotation).
The reverse engineering tool UMLGraph [10, 11]

written in Java and based on the Doclets [12], has been
used as the starting point to build our tool XUG
(eXtended Uml Graph). XUG allows visualizing the class
diagram extracted from an annotated code. The result is a
dot [3] file that can be automatically processed to create,
for example, Postscript, Gif and Jpeg images.

We have extended UMLGraph with new annotations
and we have introduced a new mechanism to define
multiple views. New annotations make XUG more useful
and powerful, while the new implementation of the views
simplifies their use with respect to the original version.

/**
* @opt attributes
* @opt types
* @hidden
*/
class UMLOptions {}
/** @hidden */
class Name {}
/**
* @has 1..* Member * Student
* @composed 1..* Has 1..* Department
*/
class School {

Name name;
String address;
/** @show */
void addStudent() {}
void removeStudent() {}
/** @show */
void addDepartment() {}
void removeDepartment() {}

}
/**
* @assoc 1..* - 1..* Course
*/
class Department {

Name name;
}
class Person {

Name name;
}
/**
* @assoc * Attends * Course
* @note "this is a Person"
*/
class Student extends Person {

int studentID;
}
class Course {

Name name;
int courseID;

}
Figure 1: Example of annotated code.

In XUG, programmers can decide to change the default

show/hide setting for user-defined or library
classes/interfaces. By default, all user defined
classes/interfaces are shown. On the contrary, library
classes/interfaces are hidden. Class attributes and methods
are hidden and the shown relationships are by default only
inheritance and realization. The user can act on such

default settings in two ways: at the global level or at the
local level. It is possible to change the show/hide setting
for all classes/interfaces of the project, i.e., at the global
level, by adding global annotations. Following the
convention described by Spinellis [11], these are specified
in a special class named UMLOptions, as in Figure 1
(where all fields and field types are shown).

It is also possible to change the setting of an individual
class at the local level. In this case the annotation
temporarily overrides the global setting for the class being
processed.

Annotations can also be added directly to fields and
methods. @hidden hides a field or method, @show shows
a field or method, while @stereotype and @tagvalue
respectively add a stereotype and a tagvalue.

Relationships between classes/interfaces are added to
the class diagram by putting a relationship annotation
before the class that participates in the relation. All
relationship annotations, except @extends, need four
arguments: the source adornments (role, multiplicity and
visibility), the relationship name, the target adornments
and the target class.

For example, the class diagram extracted from the
annotated code in Figure 1 is shown in Figure 2.

School

name : Name
address : String

addStudent()
addDepartment()

Student

studentID : int

Member

*

1..*

Department

name : Name

Has

1..*

1..*

Course

name : Name
courseID : int

Attends

*

*

1..*

1..*

Person

name : Name

<<note>>
this is a Person

Figure 2: Example of diagram produced by XUG.

Annotations are not used only to add meaningful

information to diagrams and to filter them, but also to
produce multiple-views, i.e. different views of the same
code. To create a new view, it is sufficient to define a new
class with a syntax similar to that of UMLOptions.

For example, if we want to add a view where all
members of the classes are displayed we need to add a

new class view_1 as follows:

/**
* @opt all
* @hidden
*/
class view_1 {}

The setting of a single element (class, field, method,

etc.) in a given view can be also changed, by adding an
argument to the annotation that specifies the target view.
For example, if the annotation @hidden with argument
view_1 is added to the class Student of Figure 1, the result
related to view_1 will be a class diagram with only four
classes: School, Department, Course and Person.

2 .3 The drawing editor approach

In the drawing editor approach, the user modifies
manually, through a graphical user interface, the diagrams
produced by a Reverse Engineering engine. Some tools,
such as Visio, provide just drawing aids. Others, such as
Rational Rose, Together and Omondo, offer also facilities
for round-trip software engineering (i.e., changes in the
implementation are propagated to the design and vice
versa [2]). However, all drawing editors require the user
to place and manipulate figures on a graphical canvas and
to change their properties using a GUI.

In our comparative study, we have chosen the tool
Omondo [8] for several reasons. Omondo is a visual
modeling tool providing forward and reverse engineering
facilities, natively integrated with Eclipse, and it supports
round-trip design/code development. It is available in a
free version that is installed in the labs and is accessible to
the students.

Figure 3: Example of class diagram produced by

Omondo.
In the following the most important features provided

by the free version of Omondo are listed:

1. Reverse engineering: Omondo can generate
class and package diagrams from the source
code. The result can be manipulated graphically,
via context sensitive menus. Filtering and
multiple views are supported for the reverse
engineered diagrams.

2. Forward engineering: code (classes,
interfaces, methods, attributes, documentation)
is generated when designing/drawing a UML
class diagram.

3. Round-trip engineering: code and design
diagrams are kept aligned automatically.
Updates on one of the two are immediately
propagated to the other one.

4. A wide range of UML diagrams are
supported (Activity Diagram, Class Diagram,
Collaboration Diagram, Component Diagram,
State Diagram, Use Case Diagram, etc).

3. Experimental design

We adopted a simple design with two experimental
groups, a single object and two treatments applied in
sequence in inverse order for the two groups. The same
measurements were taken for both treatments. The
subjects performed the same re-documentation task with
both techniques in two different orders.

3 .1 Goal of the study

We characterize the goal of our study according to the
GQM template [1]: the goal is to analyze code
annotations and drawing editors in order to compare
them with respect to ease of use and expressive power
from the point of view of the software developer in the
context of a master degree course.

With this goal in mind we formulated three main
questions:

Q1: Is it easier to annotate the code or to edit the
diagrams?

Q2: How do recovered diagrams differ in their
quality?

Q3: In which case do the documentation guidelines
provide more help?

For Q1 we identified four main features to consider:
• the difficulty of splitting the model into several

diagrams and showing the same class on more
than one diagram;

• the difficulty of selecting the attributes and
methods to be shown for a class in each
diagram;

• the difficulty of specifying the relationships
among the classes, in particular those not

recovered automatically by the tools;
• the effort spent to generate the diagrams.

As far as Q2 is concerned we focused on two aspects:
• the quality of the default diagrams, extracted

automatically by the tools from the code without
any user intervention;

• the quality of the final diagrams, resulting from
adding annotations or graphical editing made by
the users.

For Q3 we decided to observe both the perceived
usefulness of the guidelines we provided and the process
conformance.

On the basis of the above questions we can outline
three high-level null hypotheses that we will try to reject:

Ha0: code annotations and drawing editors
are equally easy to use in software re-
documentation.

Hb0: the quality of the diagrams obtained
using code annotations and drawing editors is
the same.

Hc0: the guidelines for the documentation are
equally useful.

3 .2 Procedure

First of all let’s consider the overall context of the
course; the students have three main assignments:

1. They are given a software system in executable-
only form and documentation, they have to
install the system and write black-box
(acceptance) tests.

2. They are provided with the source code, they
perform code and design reviews and write
white-box (unit and integration) testing, while
reporting and correcting failures.

3. Using the source code they have to “re-
document” it using both techniques.

The empirical study took place in step 3, which can be
divided into three phases:

• Preparation: consisting of a 4 hours lecture. The
topics of the lecture were: an introduction to the
problems of reverse engineering, description of
the XUG annotation language, description of the
tool Omondo.

• Work: the students were left free to work on the
system and produce the required diagrams.

• Wrap-up: the students delivered the diagrams
together with a filled-in questionnaire.

The questionnaire was composed of three parts (see
Appendix A for the complete questionnaire). Part I was
about XUG, part II was about Omondo, and part III
asked the tool preference and a validation question.

For the closed answer questions in the questionnaire
we used a five points Likert [4] scale coded, as customary,

with integers ranging from 1 to 5. In addition we had a
question about the effort, measured in person-hours, and
three open questions designed to collect comments from
the subjects.

3 .3 Population and sampling

We observed seven groups of students working in an
advanced software engineering course at the Politecnico
di Torino. Each group was made of two or three students.
The groups are the subjects of our study.

The students are in their final year of a Computer
Engineering master degree. In their curriculum they had
software engineering, data base, information systems, and
object oriented programming courses.

We applied a convenience sampling: all the students
attending the course are part of the population; the
questionnaire was administered as a part of the course
assignments.

The groups were assigned randomly to the two
experimental groups: the first group was required to use
first XUG and then Omondo, the second group adopted
the inverse order.

3 .4 Instrumentation

The object of the experiment is a Heating Control
System (HCS). The HCS monitors and controls the
temperature in a building composed of several rooms. A
house is composed by many subsystems (e.g. rooms or
devices as heaters), that are connected with doors and
tubes. It is also connected with the outside world through
doors and windows. A house is also made of a texture of
subsystems that strictly interact with each other. HCS can
also check the weather conditions, an alarm, and safety
conditions (e.g. critical heating statuses, weather effects).

It is a good example of a software system. It has been
originally developed in C++ for use within the context of
software engineering courses at the University of
Kaiserlslautern. Then it has been ported to Java and
adopted in the advanced software engineering course at
Politecnico di Torino. The system is made up of 33 named
Java classes or interfaces, distributed among a total of 28
source files.

The subjects used XUG version 1.0 (available at
http://softeng.polito.it/projects/XUG) and Omondo
EclipseUML Free Edition Version: 2.0.0.

3 .5 Variables

There is only one independent variable, the tool used
to extract diagram: either XUG or Omondo.

On the basis of the questions defined in section 3 .1 we

defined the set of metrics that are shown in Table 1. These
metrics were measured from the answers to the
questionnaire; as a result, most of them are expressed in a
1 to 5 ordinal scale.

The variables can be grouped according to which high-
level hypothesis they address. The hypothesis is indicated
in the first column of the table.

Table 1: Dependent variables used in the study.
Hp. Var. Unit Description

MV [1..5] Difficulty in splitting the
system into Multiple Views

AS [1..5] Difficulty in Attribute
Selection for display in the
diagram

REL [1..5] Difficulty in specifying the
RELationships

Ha

H Person-
hours

Effort in generating the
diagrams

DD [1..5] Level of satisfaction with the
Default Diagrams

Hb

RES [1..5] Satisfaction with final RESult
TR [1..5] TRaining usefulness Hc
PC [1..5] Process Conformance

3 .6 Statistical analysis

In the hypothesis testing phase we split each high-
level hypothesis into several detailed hypotheses: one for
each related variable. All the detailed hypotheses share
the following form:

HxVar0: OmondoXUG arVarV ~~ =
Where x can be a, b, or c; Var is one of the related

variables, and toolarV~ is the median of the variable Var
for the given tool. Hypothesis Ha0 was split into HaMV0,
HaAS0, HaREL0, and HaH0. Hb0 resulted into HbRES0
and HbDD0. Hc0 was divided into HcTR0 and HcPC0.

Due to the nature of the variables and the limited
number of data point we decided to apply non-parametric
statistical tests. In particular we selected the Mann-
Whitney test [5] that is very robust and sensitive. Since H
is a continuous variable, it can be checked for normality
and, in case it is so, the t-test can be applied instead.

We decided to adopt the most commonly used value
for the alpha-level: we consider statistically significant a
test with a p-value lower than 5%. Therefore we will
consider acceptable a probability of 0.05 for the type I
error, i.e. rejecting the null hypothesis when it is true.

4. Experimental results

4 .1 Data Analysis

We received the questionnaire from all the seven
subjects involved in the study.

From a validation question present in the questionnaire
we know that three subjects used XUG first, three subjects
used Omondo first, and one subject used them in parallel.
Therefore we consider the experimental groups balanced.

The answers to the closed-answer questions are shown
in Figure 4; we use the name of the variable with an extra
X or O to indicate the value for XUG or Omondo
respectively.
As far as the effort is concerned, EX has mean 12.71,
standard deviation 10.05, and is normally distributed, EO
has mean 10, standard deviation 10.44, and is not
normally distributed. The condition for applying the t-test
does not hold.

The metrics described in Section 3.6 have been
collected after the completion of the re-documentation
task and have been analyzed through the Mann-Whitney
test. The results are shown in Table 2. Moreover, the
answers to the open questions in the questionnaire have
been carefully read and used to interpret the quantitative

results.

Table 2: Results of Mann-Whitney test on the

dependent variables.
Median/Mean Hp:

Var. XUG Omondo p-value
MV 4 2 0.28%
AS 3 1 1.52%

REL 4 2 0.40%

Ha

H 10 5 56.53%
DD 2 4 4.76% Hb
RES 3 4 20.13%
TR 4 4 52.29% Hc
PC 3 4 9.67%

Based on these results, we reject the null hypotheses

HaMV0, HaAS0, HaREL0, and HbDD0.
It should be noticed that for the variables MV, AS,

REL and H a lower value is better, while for RES, TR,
PC and DD a higher value is better. The p-values below
the chosen alpha-level are in boldface. They indicate a
statistically significant difference between XUG and
Omondo.

Since the statistically significant differences involve
variables on an ordinal scale we cannot say anything
about the effect size.

D
at

a

PCOPCXTROTRXRESORESXDDODDXRELORELXASOASXMVOMVX

5

4

3

2

1

Answers to closed-answer questions

Figure 4: Answer to c.a. questions.

4 .2 Interpretation

According to the results in Table 2, it is easier to
specify multiple views of the same system in Omondo.
With Omondo it is also easier to select which class
attributes (fields and methods) to display, as well as to
specify the inter-class relationships (see metrics MV, AS,
REL). The default diagrams produced by Omondo are
also judged substantially better than those obtained by
XUG (see DD).

Among the metrics which do not show a statistically
significant difference between Omondo and XUG, RES
and H appear particularly interesting. Although there is a
tendency in favor of Omondo (higher RES, lower H), the
null hypothesis cannot be rejected. This means that we
could not find any significant difference between the
quality of the resulting diagrams in the two cases and the
effort necessary to produce them.

Finally, it is interesting to report the following quotes,
taken from the answers to the open questions:

XUG:
“A tool to add the annotations automatically to the

code would be useful.”
“Code annotation is quite time consuming.”
“The annotations @show and @hidden should remain

valid until overridden by a successive annotation, instead
of holding for the following attribute only.”

“XUG lacks interactivity/GUI.”
“The layout of the diagrams produced by Graphviz is

good.”
“XUG lacks integration with Eclipse.”
Omondo:
“It is not possible to depict two different kinds of

relationships between the same classes.”
“Omondo is good because it does not require

annotating the source code.”
“Hiding an entity from a view should be an operation

kept more clearly distinct from removing it from diagram
and code.”

“Omondo should not annotate the code with its own
special-purpose comments.”

“With Omondo, it is easy to find the correspondences
between design and code.”

The experimental results clearly indicate that the
drawing editor is the winning approach, in that it
supports the specification of multiple system views in an
intuitive way, thanks to the GUI, with no penalty on the
quality of the output. As apparent also from the
comments, the subjects involved in this study preferred
the interactive creation of the views over their declaration
through code annotations.

A detailed analysis of the answers to the open
questions highlights several improvement areas for both
tools. This may suggest that none of the two is currently

able to support the user needs during a re-documentation
task in a satisfactory way. Actually, Omondo was mainly
conceived as a forward engineering tool, so that its use as
a re-documentation tool is expected to be sub-optimal.
The same holds for XUG, but for other reasons: XUG is
a research prototype. This means that it does not reach
the level of integration and usability of a commercial tool
such as Omondo.

This is the list of the main improvements that can be
derived from the open comments:

XUG:
• Annotation insertion is annoying. It should be

supported with more automation (control-key
sequences, GUI, etc.).

• Application of annotations to a block of
consecutive entities should be supported.

• Integration with the overall programming
environment is desirable.

Omondo:
• Code editing and view editing are different

activities, which are not always well-separated.
• View editing should not result in code

modifications, such as the insertion of special-
purpose comments.

4 .3 Threats to validity

Although we did our best to minimize the threats to the
internal and external validity of this study, some of them
might have affected the obtained results. It is possible to
identify four type of threats to validity [14]:

• Conclusion: concerns the relationship between the
treatment and the outcome.

• Internal: concerns the correct identification of a
cause-effect relationship.

• Construct: concerns the link between the theory
and the observations.

• External: concerns the capability to generalize to a
wider population.

As far as internal validity is concerned we must
consider the training time. The training time was
somewhat limited by the course schedule. Approximately
the same time was devoted to the training of the students
with Omondo and with XUG. However, we have reasons
to believe that XUG may need more training for an
effective use.

The different maturity of the tools can constitute a
threat to the construct validity. Omondo is a commercial
tool while XUG is a free research prototype.
Correspondingly, the latter is trickier to use, it comes
with less documentation, and it requires more
familiarization. This is also related to the training time
issue. It might be the case that a more mature version of
XUG would have received a better appreciation from the

students.
The most important threats to external validity are the

age and skill of programmers, and the size of the target
program.

Since the involved programmers are all young, there
might be a bias towards the usage of modern, integrated,
graphical tools. This is especially true for Omondo,
which is completely integrated into the Eclipse platform.
It might be the case that senior programmers, who are
used to work in an environment supporting just textual
editing and the command line, are more receptive to code
annotation tools, such as XUG, than to tools which
require the development of the software within a
graphical environment.

The use of students in experiments is always subject
to debate although there is evidence that similar
improvement trends can be observed both for students
and professional developers [9].

There could be a mono-operation bias. The size of the
target program is an important variable. We had to keep
it limited, to comply with the requirements of the course
in which the experiment was conducted. It is not clear if
on larger programs the interactive facilities offered by
Omondo would remain more effective and more usable
than the annotation of the source code. Moreover, we
could not test the maintainability and evolvability of the
diagrams in the medium/long term.

5. Conclusions and future work

We conducted an experiment comparing the use of
code annotations to drawing editors for the re-
documentation of object oriented code.

The main outcome of the study is that the drawing
editors are more usable and produce diagrams with a
comparable perceived quality. Notably we could not find
any difference in terms of effort required by the two
approaches.

As a future work we plan to implement some of the
suggested enhancement for XUG, in particular:

• a better integration with the development
environment,

• improvement of the annotation language to
reduce the number of annotations to be written

As soon as XUG achieve a more mature level we aim
at using it within a large project to assess its usability and
usefulness in an industrial context with a large code base.

In addition we plan to conduct further empirical
studies. The main areas of interest are:

• comparing the maintainability and obsolescence
of documentation produced with the two
approaches,

• evaluating the usefulness of the documentation
produced by means of reverse engineering in

terms of improved maintenance effectiveness and
efficiency.

6. References

[1] V. Basili, G. Caldiera, and D. Rombach, "Goal
question metric paradigm" in Encyclopedia of
Software Engineering, vol. 1, J. J. Marciniak, Ed.:
John Wiley & Sons, 1994.

[2] B. Bruegge and A. H. Dutoit, Object-Oriented
Software Engineering: Conquering complex and
changing systems: Prentice-Hall, 2000.

[3] E. R. Gansner and S. C. North, "An Open Graph
Visualization System and its Applications to
Software Engineering" Software Practice and
Experience, 30 (11): 1203-1233, 2000.

[4] R. Likert, "A technique for the measurement of
attitudes" Archives of Psychology, 140: 5-55, 1932.

[5] H. B. Mann and D. R. Whitney, "On a test of
whether one of two random variables is
stochastically larger than the other" Annals of
Mathematical Statistics, 1947.

[6] G. A. Miller, "The Magical Number Seven, Plus Or
Minus Two: Some Limits On Our Capacity For
Processing Information" The Psychological Review,
63: 81-97, March 1956.

[7] OMG, "Unified Modeling Language Specification"
version 1.5, June 1999 available at
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

[8] Omondo, Omondo home page, available at:
http://www.omondo.com (last access May 16, 2005),
2005

[9] P. Runeson, "Using Students as Experiment Subjects
– An Analysis on Graduate and Freshmen Student
Data" Proc. of 7th International Conference on
Empirical Assessment & Evaluation in Software
Engineering (EASE'03), April 8-10, 2003

[10] D. Spinellis, "On the declarative specification of
models" IEEE Software, 20 (2): 94-96, March/April
2003.

[11] D. Spinellis, Drawing UML Diagrams with
UMLGraph, available at:
http://www.spinellis.gr/sw/umlgraph/ (last access
May 16, 2005), 2005

[12] Sun Microsystems Inc., Doclet Overview, available
at:
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/do
clet/overview.html (last access May 16, 2005), 2004

[13] P. Tonella and A. Potrich, "Reverse Engineering of
the UML Class Diagram from C++ Code in Presence
of Weakly Typed Containers" Proc. of ICSM 2001,
International Conference on Software Maintenance,
Florence, Italy, November 7-9, 2001, pp. 376-385.

[14] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B.

Regnell, and A. Wesslen, Experimentation in
Software Engineering: An Introduction: Kluwer
Academic Publishers, 2000.

7. Appendix A – Full questionnaire

We present here the full questionnaire we used.

Part I – XUG

I.1. Showing the same classes on
several diagrams has been
[] immediate; [] easy; [] easy enough;
[] difficult; [] complex

I.2. Selection which attributes and
methods to show in each class has been
[] immediate; … [] complex

I.3. Specifying the associations
among the classes has been
[] immediate; … [] complex

I.4. How do you judge the final
result?
[] bad; [] not satisfying; []
sufficient; [] good; [] excellent

I.5. The guidelines provided in the
classroom have been
[] counterproductive; [] not useful;
[] not relevant; [] useful; [] very
useful

I.6. The process proposed in the
classroom has been followed
[] not at all; [] for a small part; []
partially; [] mostly; [] completely

I.7. How do you judge the diagrams
produced automatically without
annotations?
[] bad; [] not satisfying; []
sufficient; [] good; [] excellent;

I.8. Which was the main difficulty?
[] annotate the code[] find the
correspondences between design and
code [] locate the code relative to
diagrams [] other, please detail:

I.9. How many person-hours have been
used to produce the diagrams?

I.10. How could we improve the
annotations in XUG?

I.11. What are your general
impressions of XUG?

Part II – Omondo

II.1. Showing the same classes on
several diagrams has been
[] immediate; … [] complex

II.2. Selection which attributes and
methods to show in each class has been
[] immediate; … [] complex

II.3. Specifying the associations
among the classes has been
[] immediate; … [] complex

II.4. How do you judge the final
result?
[] bad; … [] excellent

II.5. The guidelines provided in the
classroom have been
[] counterproductive; … [] very useful

II.6. The process proposed in the
classroom has been followed
[] not at all; … [] completely

II.7. How do you judge the diagrams
produced automatically?
[] bad; … [] excellent;

II.8. Which was the main difficulty?
[] adjust graphically the diagrams []
find the correspondences between
design and code [] locate the code
relative to diagrams [] other, please
detail:

II.9. How many person-hours have been
used to produce the diagrams?

II.10.How could we improve the Omondo?

II.11.What are your general
impressions of Omondo?

Part III – Overall questions

III.1.Which tool did you use first?
[] Omondo [] XUG [] both in parallel

III.2.Which tool do you prefer and
why?

