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Abstract. Multi-Agent Systems have been proposed as a suitable conceptual
and technological framework for building information systems which operate in
open, evolving, heterogeneous environments. Our research aims at proposing de-
sign techniques and support tools for developing such complex systems. In this
paper we address the problem of better linking requirements analysis to detailed
design and implementation in the Tropos agent-oriented methodology with the
aim to address adaptability issues. In particular, we revisit the definition of agent
capability in Tropos and refine the development process in order to point out
how capability specification can result from the integration of various analysis
strategies. We also show how fragments of an implementation can be generated
automatically from an agent capability specification.

1 Introduction

Nowadays, distributed information systems need to operate in open, evolving,
heterogeneous environments. Trust in these systems by their owners and users en-
tails ever-increasing expectations for robustness, fault tolerance, security, flexibility and
adaptability. Multi-Agent Systems (MAS) have been proposed as a suitable conceptual
framework for building such information systems [3, 5, 10, 15, 12]. In this framework,
an information system is conceived as an open network of software agents who inter-
act with each other and human/organizational agents in their operational environment
in order to fulfill stakeholder objectives. Agent-oriented software engineering projects
have been developing novel design techniques and support tools for complex informa-
tion systems [10]. In particular, the Tropos methodology [3, 5] captures early require-
ments through an analysis of stakeholder goals and strategic dependencies among them.
System requirements and design is then derived in a systematic way. System design
includes both architectural and detailed design, and is followed by system implementa-
tion. Our research is conducted within the context of the Tropos project.

In this work, we refine the Tropos software development methodology proposed else-
where [3, 5] by focusing on the concept of agent capability. Agent capability has been
defined in agent-oriented programming [20] as the ability of an agent to achieve a goal.
This definition has been revised in recent work [15] into a refined notion based on the
philosophical idea that ‘can’ implies both ability and opportunity. This suggest that
the lack of either ability or opportunity implies ‘cannot’. More specifically, [15] uses
the concept of “capability for a given goal” meaning that the agent has at least one plan
—the ability— that can fulfill a given goal. This plan constitutes a necessary condition
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for achieving the goal, while the sufficient condition (i.e. the opportunity) is defined in
terms of the pre-conditions or the context that can trigger the plan.

In this paper, we illustrate how the above capability definition can be naturally ac-
commodated with the goal and plan concepts. More precisely, as detailed in [17], an
actor capability is always related to a leaf-goal after goal analysis has been completed.
Moreover, we revise the Tropos design process in order to make capability modelling
and analysis more explicit and systematic. This extension allows us to better exploit
information on the environment captured during early and system requirements analy-
sis, while conducting design and implementation of a MAS. Our ultimate objective is
to define a systematic process for designing software agents able to adapt and extend
their capability at run time, through composition mechanisms analogous to those used
in web services [21].

In this work, we adopt Model-Driven Architecture (MDA) guidelines and standards
proposed by OMG’s [14]. Along with an extended Tropos development process, we
are developing specific tools that support the proposed methodology by facilitating the
construction, analysis, and transformation of models.

The rest of the paper is structured as follows. Section 2 recalls background notions
of Tropos and of MDA guidelines and standards. Section 3 introduces an example we
use to illustrate our approach. Section 4 introduces our definition of capability and
proposes a systematic process for capability design. Section 5 presents a toolset for
implementing capability in JADE (Java Agent Development Framework [2]) through
an automatic transformation of a platform independent model to a platform specific
one, while Section 6 describes capability implementation. Section 7 presents related
work and Section 8 offers concluding remarks.

2 Background

We adopt the Tropos agent-oriented methodology [3, 5] which rests on a model-driven
software development process, i.e. it guides the software engineer in building a concep-
tual model, which is incrementally refined and extended, from an early requirements
model to system design artifacts and then to code. The methodology uses a modelling
language based on a multi-agent paradigm named i* [22], which provides concepts of
actor, goal, plan, softgoal, resource and capability. The i* modelling framework also
includes relationships between actors and goals. In addition, the framework provides a
graphical notation to depict views of a model, such as actor diagrams, which point out
dependencies between a set of actors and goal diagrams, which depict how actor goals
can be decomposed into subgoals1.

The Tropos methodology also includes various analysis techniques which are tool
supported2 and a structured software development process which has been specified
in terms of a non-deterministic concurrent algorithm [3]. This process starts with the
identification of critical actors (“stakeholders”) in a domain along with their goals, and

1 The Tropos modelling activities are supported by the TAOM4E tool [18] (see
http://sra.itc.it/tools/taom).

2 The Tropos formal analysis, goal-reasoning and security analysis techniques are supported by
the T-Tool, the GR- Tool and ST-Tool respectively (see http://www.troposproject.org).
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proceeds with the analysis of goals from the perspective of each actor. In particular,
given a goal, the software engineer may decide to delegate it to an actor already existing
in the domain or to a new actor. Such delegations result in a network of dependency
relationships among actors. Moreover the software engineer may decide to analyze a
goal producing a set of subgoals. Goal analysis generates a goal hierarchy where the
leaves in various combinations represent concrete solutions to the root goal. Finally the
software engineer may decide that a certain actor is able to satisfy the goal via a plan
the actor is able to execute; in this case the goal is assigned to that actor (with no further
delegations). The process is complete when all goals have been dealt with.

This iterative process is organized in four main requirements analysis and design
phases, each characterized by specific objectives. In particular, during Early Require-
ments the environment (i.e. the organizational setting) is modelled and analyzed; during
Late Requirements, the system-to-be is introduced and its role within the environment
is modelled; during Architectural Design the system architecture is specified in terms
of a set of interacting software agents; Detailed Design is concerned with the speci-
fication of software agent capabilities and interactions and provides the input to code
generation.

In refining the modelling process algorithm and building tools which can support
it [19], we adopted ideas and standards from MDA. MDA conceives system develop-
ment in terms of a chain of model transformations, namely, from a domain model (Com-
putationally Independent Model — CIM) to a Platform Independent Model (PIM), and
from a PIM to a Platform Specific Model (PSM), from which code and other develop-
ment artifacts can then be straightforwardly derived. In this paper we focus on how to
build a PIM for a MAS generic platform in Tropos and on how to automatically trans-
form it into a PSM; we consider here the JADE programming platform [2] metamodel.
Our framework is compliant with the MDA metamodelling standard called Meta Object
Facility (MOF) [13], which defines a set of modelling constructs supporting metamod-
elling. Moreover, we exploit a Frame Logic-based approach described in [6] to deal
with metamodel to metamodel transformations.

3 Example

An example is taken from the on-line selling shop application3 domain. According to
Tropos, the early requirements analysis has to define the social actors and their inten-
tions in terms of social dependencies, commitments, and responsibilities among stake-
holders. While, the late requirements phase introduces the system-to-be —e.g. the actor
Retailer System— relating it to the other stakeholders of the domain. In this case,
as depicted by the Fig. 1, some of the Customer needs are delegated to the Retailer
System —i.e. softgoals search for the desired product automatically, flexible and
automatic payment, and fast delivery— in order to correctly design the system func-
tionalities. For the sake of simplicity, the figure does not depict all the elements a why
dependency is composed of. Each time a Customer asks for product details, Retailer
System can fulfill such a request by achieving the goal provide product info. As il-
lustrated by the goal diagram of Fig. 1, there are two possible (means-ends) alternatives

3 The scenario used is an idealization, intended solely for illustration purposes.
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Fig. 1. Late Requirements: Fragment of Retailer System Goal Analysis

to deals with such a goal: browse catalog and solve query. Moreover, in our case,
the goal diagram models a class of Customers that need to search for product details
as much as possible automatically, i.e. by the softgoal search for the desired product
automatically. This non-functional requirement can be used by the Retailer System to
drive the plan selection according to the contribution link analysis. Specifically, as illus-
trated by Fig. 1, the plan solve query gives a positive contribution (+), while browse
catalog gives a negative contribution (-) to this softgoal.

Given a characterization of the system-to-be inside its operating environment, e.g.
Fig. 1, the methodology allows the designers soft attention to Architectural and Detailed
Design. In our case, Fig. 2.(A) depicts a fragment for the Architectural Design phase
where the main system components have been identified, i.e., Web Server, Order
Manager, and Search Manager. The fulfillment of some of the previous functional
and non-functional requirements have been delegated to such actors (hereafter agents).
For example, as depicted in Fig. 2.(A), the goal provide product info has to be fulfilled
by the agent Search Manager. Again, the plan process credit-card form has been
delegated to the external actor Credit Authority. Therefore, architectural design results
in a multi-agent system consisting of agents, dependencies among them, as well as
environmental constraints these agents have to cope with.

The Detailed Design deals with specification details for each agent, showing and
describing how an agent concretely behaves in order to execute a plan or to satisfy a
goal. For example, as illustrated by Fig. 2.(B), in order to fulfill the plan solve query,
the agent Search Manager relies on three sub-plans interpret ACL performatives,
deal with cooperation, and provide results. For the sake of simplicity, only the plan
deal with cooperation has been further detailed in three atomic sub-plans search for
new acquaintances, get the query, and deal with matching. In our case, to get
the query, this agent depends on the actor Web Server responsible for interfacing the
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Fig. 2. (A) Architectural Design: fragment of the Retailer System sub-actors definition; (B)
Detailed Design: fragment of the Goal Analysis for the agent Search Manager

system-to-be with external users or other agents (Customer). Therefore, Customer,
who models both human users and software agents, depends on the system through the
component Web Server for the goal provide requested service. Moreover, softgoals
may model stakeholders needs that may be only achieved by means of specific system
actor capabilities. Hence, also softgoals (Fig. 1) have to be delegated to specific system
components, e.g. Customer depends on Search Manager to satisfy search for the
desired product automatically.

To effectively deal with the agent behavior at run-time, the methodology has also
to address the dynamic aspects that affect agent activities. This important phase is dis-
cussed in detail in the next sections.

4 Capability Design

While we adopt the Tropos definition of capability, we propose to extend the way
to specify it during design by explicitly describing not only the dynamic part, but
also its descriptive and context part. For this, we revise the Tropos definition of ca-
pability to include both ability and opportunity, as detailed in [17]. In particular, the
ability part is described via the Tropos means end relationship between a goal and
a plan, while the opportunity is described in Tropos via plan/softgoal contributions,
〈plan, softgoal, metric〉 (metric ∈ {+, −, ++, −−}) and environmental constraints
(e.g. temporal constraints between sub-plans) that are specified by model annotations.
More formally, the definition of capability is given in terms of a set of basic building
blocks that a designer can use to represent its several aspects, namely:

Cap = 〈means end(goal, plan), ∪icontribution(plan, softgoali, metric),
{A1, . . . , An}〉
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where contribution(plan, softgoali, metric) is the set of contribution relationships
of the plan plan to the softgoals softgoali —according to a specific metric metric—
and {A1, . . . , An} is a set of model annotations that describe domain constraints. Our
work adopts the Formal Tropos language [8], a first order temporal logic language, to
specify constraints on the model elements4. The annotations contain also information
that concern dynamic aspects of a capability. In our approach, these dynamic aspects
are modelled by AUML activity and interaction diagrams, see Fig. 3. In this approach,
each root-level plan may be described by an activity diagram, where leaf-level plans
are modelled as activities. Indeed, the Tropos AND/OR decomposition comes out with
leaf-level plans suitable to model atomic agent actions.
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Fig. 3. Focusing on the dynamic dimensions of a capability: (A) actor’s view in Tropos notation,
(B) control-flow structure of the ability plan, and (C) agent-interaction for a part of the ability
fulfillment, i.e. activity Activitya

Fig. 3.(A) shows the elements and the relationships that characterize a capability
from early requirements to detailed design. Fig. 3.(B) describes the activity diagram for
the plan, while Fig. 3.(C) gives the representation of agent interactions for just one of
the activities of the plan —Activitya. We can find this pattern in the example shown
in Fig. 1; focusing on the goal provide product info the ability part of the capability is
given by the means ends relationship with the plan solve query. The ability part only
gives a partial description of the capability, that is, it does not provide any informa-
tion on the influence of the environment on the behavior of the system at run-time. The
second part of the definition describes the opportunity for the capability, can be given
via “softgoal contributions”, e.g related to the softgoal search for the desired prod-
uct automatically that our customer requires. As an example, in Table 1, for Cap2,

4 We are exploring the possibility to integrate different approaches dealing with the agent
intelligence representation, such as, declarative annotations in OWL-S [21, 16], or belief-
desire-intention concepts for agent behavior characterization [4, 15]. Therefore, the annota-
tions A1, ..., An, could represent further details of a capability expressed in one of several
specification languages.
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we specify an annotation named A1 that is associated with a BDI based semantics as
detailed in the next Section.

In order to support the capability design activity, we added a new step to the Tropos
algorithm described in [3]. The details of a revised version of the proposed algorithm
for the Tropos design process can be found in [17]. In particular, during the initializa-
tion of the design process, the set of stakeholders and goals is added to the model; goals
are then assigned to actors, and therefore become the root goals for those actors. During
the analysis, for every goal in the model, a goal Analysis step is carried out, in order
to delegate the goal, expand it into subgoals or operationalize each goal, associating it
one or more plans, thereby discovering a required capability for the system. Accord-
ing to this strategy, given a certain goal, the capability modelling procedure proposes
plans that can fulfill the goal and adds to the current model a means ends relationship
for every discovered goal/plan pair. This pair constitutes the first part of the definition
of a capability. For every discovered means ends links the algorithm collects the set of
“softgoals contribution” relationships related to the plan involved in the contribution
and discovered during the modelling process. These contributions represent conditions
from the domain for that capability. The set of annotations —such as softgoals that
model environmental constraints, related to the goals/plans involved in the capability—
feeds the “annotation” part of the capability definition, e.g. A1 for Cap2. The capability
discovery and specification process can be iterated during the whole modelling activity
in order to capture new capabilities or new components of capabilities that have been
already specified and that gradually emerge during the analysis. The output of the anal-
ysis process is a set of capabilities related to a given goal that in our case is partially
illustrated in Table 1.

Table 1. Capabilities at Architectural Design phase

Agent Capabilities Means End(goal,plan) List of Contributions Annotations
SearchManager Cap1 provide product Info, {search the desired prod. autom. -} ...

browse catalogue
Cap2 provide product Info, {search the desired prod. autom. +} A1

solve query
CreditAuthority Cap3 provide payment facilities, {flexib. and autom. pay. +} ...

process credit card
Cap4 provide payment facilities, {flexib. and autom. pay. -} ...

show bank transfer info
OrderManager Cap5 provide order, {null} ...

manage order form
... ... ...,... {...} ...

Focusing on Ability. Taking advantage from the previous capability modelling phase,
here we illustrate how the methodology effectively deals with ability aspects. Fig. 4
addresses the dynamic aspects of the capability Cap2. To effectively deal with such
aspects, we consider two dimensions: (i) the control-flow structure of the activities that
the capability is composed of, and (ii) for each activity and for each agent interaction
required by its execution, the required interaction protocols. We propose to use AUML
activity diagrams for (i) —e.g. as illustred in Fig. 4.(A)— and AUML interaction dia-
grams for (ii) —e.g. as illustrated in Fig. 4.(B). In the example, the control-flow for the
ability part of Cap2 is composed of 4 activities —i.e. Fig. 4.(A)— with the following
labels and meanings:
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– get the query. As further detailed by the interaction diagram of Fig. 4.(B), Search
Manager waits for the web-user’s request that carries out partial information on the
product it is interested in, i.e. such an agent plays the responder role within a FIPA-
request. The message content carries out the information on the product to look for,
structured as follows: <product-category=..>, <product-name=..>,
<product-quantity=..>, <product-price-range=(min,max)>.

– deal with matching. Once the product specifications have been correctly inter-
preted the Search Manager checks such a product in its local repository. Notice
that, this phase does not require any external interaction, but the repository is in-
quired by Search Manager using a self FIPA-request IP.

– search for new acquaintances. This activity is performed when a failure oc-
curs during the local matching phase (deal with matching), e.g., the local stock
quantity is not sufficient for the required quantity, the current price does not fit the
range, the product does not exist, etc. Therefore, in order to overcome such failures,
the Search Manager cooperates with other providers, i.e. distributed warehouses.
This capability activity is the most complicated as depicted by Fig. 4.(C), indeed, it
is composed of three IPs: i) a FIPA-request in order to ask the Directory Facilitator
(DF) for the providers; ii) n FIPA-requests targeted to all the providers returned by
the DF in order to check the product availability in their warehouses; iii) a FIPA-cfp
in order to negotiate the best price with the n-j providers figured out at the previous
step.

– provide results. At the end, the agent communicates the obtained results by a
simple inform message that can be of two types: a failure description (no results)
or a list of retrieved products along with their detailed descriptions.
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5 From Platform-Independent to Platform-Specific Model

In this section we present a technique to automatically derive the description of the ca-
pability of a JADE agent, i.e. a PSM, from the PIM model. In particular, we show how it
is possible to map AUML Activity and Interaction Diagrams to JADE structures, using
transformation techniques compliant with MDA’s Query/View/Transformation require-
ments, that have been introduced in [9]. We exploit a Frame Logics based approach
to model transformation described in [6] and implemented in the Tefkat tool5. The
language consists of three major concepts: pattern definitions, transformation rules,
tracking relationships. Pattern definitions are generated in order to identify structures
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Fig. 5. (A) Fragment of the Interaction Diagram metamodel (part of the PIM model); (B) Frag-
ment of the JADE metamodel (the PSM)

that are frequently used in a given transformation. Transformation rules map source to
target metamodels constructs. Tracking relationships allow to maintain the traceability
between entities in source and target model instances. The syntax of rules uses clauses
such as the Forall and Where to recognize elements of the instance of the source model,
and Make and Set for building the instance of the target model.

In the following we give an example of the mapping of AUML Interaction Diagrams
to a subset of the JADE platform concepts based to the example described in the pre-
vious sections. The transformation is based on the metamodels of the two languages.
Fig. 5(A) shows a subset of the AUML Interaction Diagram metamodel as described
in [1]. From one side the agents involved in the interaction represented by the class
Agent, on the other the interaction protocol constituted by a set of interactions (repre-
sented by the class Interaction and Interaction Protocols) made of simple messages or
more complex structures like the And, Or and Xor composition of messages.

5 More details are available in http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
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A subset of the target metamodel is shown in Fig. 5(B). Here an agent is described
as an aggregation of Message Queue, Agent States and Scheduler behaviors that is an
aggregation of behaviors. A behavior can be simple or composite, allowing to specify
a composition of several behaviors. Fig. 6 illustrates an excerpt of the mapping rules

TRANSFORMATION Interaction2JADE: auml → Jade
RULE Agent2Agent()

FORALL MyAgent mya
MAKE AgentJ a
SET a.name = mya.name, a.role = mya.role;
LINKING AgentForAgent WITH agent = a, myagent = mya

RULE InteractionProtocol2Behaviour()
FORALL MyAgent a1, MyAgent a2, InteractionProtocol ip
WHERE ip.send = a1.name

AND ip.rec = a2.name
OR ip.rec = a1.name
AND AgentForAgent LINKS myagent = a1, agent=ag1
AND AgentForAgent LINKS myagent = a2, agent=ag2

MAKE Behaviour b1
SET b1.type = ip.type, b1.sender = ip.send, b1.receiver = ip.rec, b1.counter = ip.counter, b1.AgentJ = ag1

. . . . . .

Fig. 6. An excerpt of the transformation from Interaction Diagram metamodel to JADE meta-
model defined in the grammar described in [6]

from the Interaction Diagram metamodel to JADE platform metamodel. They are spec-
ified in terms of a subset of the grammar described in [6]. The RULE Agent2Agent
allows for the transformation of the set of agents of the Interaction diagrams into a set
of agents (AgentJ) in the target JADE model. The rule is composed by clauses: the
clauses FORALL and WHERE retrieve the set of agents in the source metamodel; the
clauses MAKE and SET are in charge to build the set of Agents in the target platform,
simply creating a new agent for every retrieved agent in the source model. The RULE
InteractionProtocol2Behaviour refers to the mapping of the Interaction Diagrams ele-
ments, and in particular of the messages exchanged by agents in a given protocol, into
the definition of a JADE agent behavior. The target structure is created via the MAKE
directive and instantiated via the SET directive in the rule; part the resulting XMI file is
shown below.

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:jade_conc="http:///jade_conc.ecore">
<jade_conc:AgentJ xmi:id="26990772" name="Search_Manager" role="Serch_Manager"/>
<jade_conc:AgentJ xmi:id="11552137" name="Provider" role="Provider"/>
<jade_conc:Behaviour xmi:id="10834914" type="req"

sender="Search_Manager" receiver="Provider" counter="1"/>
<jade_conc:Behaviour xmi:id="2511137" type="cfp"

sender="Search_Manager" receiver="Provider" counter="2"/>
...
</xmi:XMI>

6 Ability and Opportunity Implementation

Let’s consider one of the examples of Table 1. Cap2 is composed of an ability part —
i.e. the plan solve query— and an opportunity part —i.e. the softgoal research for the
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desired product automatically. Since the opportunity aspect is related to the intel-
ligent part of an agent behavior, it naturally fits into a Belief-Desire-Intention (BDI)
agent architecture, having adopted the Jadex plug-in for JADE. Although our current
prototype only supports the automatic transformation (from detailed design to imple-
mentation) for the ability part, we have manually generated the opportunity part as
Jadex-based precondition. In this case, the goal provide product info has been assigned
specific trigger-messages (FIPA-request) that the agent can satisfy adopting one of the
abilities already specified at design-time in Fig. 2.(B) —i.e. plans browse catalog and
solve query. Notice that, these trigger-messages may also carry out information about
the user’s profile —i.e. as a precondition— that enables or disables the achievement
of specific softgoals. Specifically, such a precondition for Cap2 has been annotated in
A1 at design-time, as depicted in Table 1. Therefore, each time a user logs in, the sys-
tem classifies her/him into a predefined category that also enables or disables (true or
false) the activation of specific preconditions. For example, if the softgoal research
for the desired product automatically is enabled, at the time the agent has to achieve
the goal provide product info, the ability solve query will receive a higher selection-
priority in respect to browse catalog.

(A) (B)

Fig. 7. A fragment of the Cap2 implementation: (A) control-flow as a JADE-based automaton
implementation, (B) agent interactions as JADE-based FIPA IPs

The implementation of the ability part of a capability results from a transformation
process, previously explained, in terms of a set of Tefkat xmi files, one for each activity
of the AUML activity diagram. Consequently, as shown in Fig. 4 Cap2 is composed of
4 transformation output files that are read and interpreted in order to generate the real
Java code, i.e. our agent template for the agent Search Manager. Iteratively the same
process applied to the whole table 1 produces the MAS previously designed.
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The tool component in charge of performing the last development phase —i.e. code
generation— uses very simple rules6 in order to map the semi-structured information
specified by the xmi output files into a JADE-based agent framework. Such rules drive
the mapping between the diagrammatic concepts and a flexible agent framework that
allows an agent to play different roles along with different capabilities according to
specific environmental conditions —i.e. trigger messages that represent stakeholder in-
tentions. The principal rules that have been adopted for our agent framework are the
following:

1. Each agent extends the class jade.core.Agent according to special trigger-messages
—i.e. target goals. That is, an agent can sense the environment and consequently
switch to a specific role, hence it plays a precise capability. To deliver on such an
aim, each agent owns a table that relates each capability to a set of trigger-messages
and viceversa.

2. Each capability extends the class jade.core.behaviours.FSMBehaviour, namely it
represents a final states machine (automaton). Thanks to such an implementing
choice, each single activity of an activity diagram —i.e. an atomic task of the
capability— corresponds to a single state of the automaton.

3. Each state is monitored —in terms of messages exchanged— in order to make the
agent aware about the next state-transition. Thanks to such a feature, the agent can
handle non-deterministic events at the moment they occur. Moreover, each time a
failure occurs, such a strong property may allow the agent to switch in a compen-
sation state7.

An excerpt of the ultimate Cap2 development phase is given in Fig. 7. In particular,
Fig. 7.(A) shows how is defined in JADE the automaton associated to Cap2: a states
assignment step, e.g. registerState(new Deal With Matching(),ONE STATE) and a state
transitions step, e.g. registerTransition(ONE STATE,TWO STATE,ONE TWO). Notice
that, each single activity of the activity diagram (Fig. 4.(A)) has been mapped in a
JADE jade.core.behaviours.FSMBehaviour state, while inside each state a FIPA-IP has
been mapped in an equivalent JADE FIPA-IP, as detailed by Fig. 4.(B). As illustrated
in Fig. 4.(B), the framework allows the agent to monitor the state termination, namely,
each IP (JADE behavior) saves its information on a jade.core.behaviours.DataStore
class that is periodically checked (i.e. by our dsManager). This framework property al-
lows the agent to monitor its internal behaviors and to pro-actively react against internal
failures.

7 Related Work

There are, two types of research that are relevant to our work, namely research on agent
capability and on AOSE methodologies covering agent implementation issues. Along
the first line we mention the proposal given in [15], which defines a possible formal

6 Related to the target agent framework building. Moreover, we are still investigating how many
of these rules can be delegated to the Tefkat engine.

7 This issue is not within the scope of this paper. However, we are actively investigating it.
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relationship between capabilities and BDI concepts —i.e. beliefs, goals and intentions.
This work roots the concept of capability into the philosophical idea that ‘can’ implies
both ability and opportunity.

As detailed in this paper, our approach adopts the concept of capability as composed
of ability and opportunity. Moreover, our approach extends previous capability formal-
izations principally in two directions. The first one is that it considers the possibility
to have an agent ability —i.e. a plan— decomposed in sub-plans that can also be dele-
gated to other agents. While, the second extension takes into account the possibility to
have an opportunity, related to a given agent ability, composed of different opportunities
that come from other agent perspectives. Moreover by means of our methodology the
designer can trace the capability environmental constraints arisen in the early phases
down to detailed design and implementation.

An approach which attempts to link the operative part of the capability —i.e. a set
of actions embedded in the behavior concept— with the intelligence of an agent —
i.e. in terms of beliefs and intentions, is proposed in [4]. More precisely, the authors
propose an agent-oriented approach to software engineering called Behavior Oriented
Design (BOD). By means of their BOD methodology, a complex problem can be de-
composed in simple and independently modules that contain the agent actions. In par-
ticular, they consider an agent characterized principally with: goals —i.e. conditions to
be achieved—, intentions —i.e. goals and subgoals that are currently chasing—, beliefs
—i.e. the knowledge basis as partial view of the world—, and the behaviors —i.e. set
of actions it can take. Thanks to such an approach, each agent can be characterized
by behavioral modules. Even if our capability definition seems similar to this behavior
concept, the proposed framework is less flexible than our in detailing the single compo-
nents. In particular, the above mentioned approach, considers the modules as predefined
rigid blocks of actions related to specific agent goals and beliefs. On the contrary, our
approach also describes how atomic actions (sub-plans) contribute to the stakehold-
ers intentions and beliefs achievements, i.e. by the softgoal contribution link analysis
technique.

Along the second line, [11] goes in the direction of adding flexibility to agents and
proposes a component based framework that facilitates the domain experts themselves
making modification of deployed multi-agent systems with the aim of increasing the
capacity of the systems to fit the evolving needs identified in the domain. In particular
the framework is based on agent systems composed by well defined components and
gives a structured support to the user for modifying or composing existing components,
or adding new components in well defined ways; this mechanism, for example, intends
to help the experts in specifying new goals and plans for the agents starting from the
adaptation of the components that describe the existing one.

Among AOSE methodologies that describe and cover the agent implementation
phase, Passi seems to be one of the most flexible and documented [7]. In the Passi
methodology the process that guides the agent-based code generation is quite similar to
our approach. For example, such methodology adopts activity diagrams to specify agent
behaviors (i.e. Multi-Agent Behaviour Description), and it characterizes an agent role
in terms of its tasks, e.g. see Chapter IV of [10] for details. The main differences with
our approach are the followings. While Passi aims to model an agent role in terms of
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its tasks (i.e. the behavior), we model capabilities in terms of interaction protocols and
internal tasks. In this way, the role is only a logical concept that arises when the agent
plays a specific set of capabilities. Hence, our agent may play several roles, namely an
agent behavior may be composed of several capabilities (composition). Passi does not
consider stakeholder intentions and social dependencies —e.g. as illustrated in this pa-
per by the Tropos softgoals— as strategic knowledge elements that the agent requires to
effectively deal with capability selection. On the contrary, by means of the opportunity
concept modelling, we are able to embed in the agent knowledge also environmental
constraints figured out at the early phases of the requirements analysis. Notice that,
such requirements cannot (easily) emerge by only considering the MAS architectural
level.

8 Conclusions and Future Work

This paper focuses on design issues for agent oriented software development, such as
requirements traceability and automated code generation. In particular, we revise the
Tropos capability definition to better trace early and late requirements —e.g. stake-
holder intentions and domain constraints— till down the MAS detailed design and im-
plementation phases. Specifically, we have illustrated through examples —supported by
prototype tools— that a MDA approach can cope with the automatic mapping between
a platform-independent agent-based conceptual model (Tropos) and a platform-specific
agent-based model (JADE). Whenever possible, our approach is based on current stan-
dards, namely, OMG’s MDA for model transformations, IEEE’s FIPA for an agent ar-
chitecture and interaction protocols, and AUML for activity and interaction diagrams.
As future work, we propose to deal with monitoring and compensation during capabili-
ties execution to validate the system behavior with respect to design-time requirements.
Further validation on real case studies will also be performed.
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