
682

Agent Patterns for Ambient Intelligence

Paolo Bresciani, Loris Penserini, Paolo Busetta, and Tsvi Kuflik

ITC-irst
via Sommarive 18

I-38050 Trento-Povo, Italy
{bresciani,penserini,busetta,kuflik}@itc.it

Abstract. The realization of complex distributed applications, required in areas
such as e-Business, e-Government, and ambient intelligence, calls for new de-
velopment paradigms, such as the Service Oriented Computing approach which
accommodates for dynamic and adaptive interaction schemata, carried on on a
per-to-peer level. Multi Agent Systems offer the natural architectural solutions to
several requirements imposed by such an adaptive approach.
This work discusses the limitation of common agent patterns, typically adopted in
distributed information systems design, when applied to service oriented comput-
ing, and introduces two novel agent patterns, that we call Service Oriented Orga-
nization and Implicit Organization Broker agent pattern, respectivelly. Some de-
sign aspects of the Implicit Organization Broker agent pattern are also presented.
The limitations and the proposed solutions are demonstrated in the development
of a multi agent system which implements a pervasive museum visitors guide.
Some of the architecture and design features serve as a reference scenario for the
demonstration of both the current methods limitations and the contribution of the
newly proposed agent patterns and associated communication framework.

1 Introduction

Complex distributed applications emerging in areas such as e-Business, e-Government,
and the so called ambient intelligence (i.e., “intelligent” pervasive computing [7]),
needs to adopt forms of group communication that are deeply different from classi-
cal client-server and Web-based models (see, for instance, [13]). This strongly moti-
vates forms of application-level peer-to-peer interaction, clearly distinct from the re-
quest/response style commonly used to access distributed services such as, e.g., Web
Services adopting SOAP, XML, and RPC as communication protocol [6, 12]. The so
called service oriented computing (SOC) is the paradigm that accommodates for the
above mentioned more dynamic and adaptive interaction schemata.

Service-oriented computing is applicable to ambient intelligence as a way to access
environmental services, e.g., accessing sensors or actuators close to a user. Multi Agent
Systems (MAS) naturally accommodate for the SOC paradigm. In fact, each service
can be seen as an autonomous agent (or an aggregation of autonomous agents), possi-
bly without global visibility and control over the global system, and characterized by
unpredictable/intermitted connections with other agents of the system. However, we ar-
gue that some domain specificities – such as the necessity to continuously monitor the
environment for understanding the context and adapting to the user needs, and the speed

P. Atzeni et al. (Eds.): ER 2004, LNCS 3288, pp. 682–695, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.3 Optimize For Fast Web View: No Embed Thumbnails: No Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [2400 2400] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 300 dpi Downsampling For Images Above: 450 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Maximum Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 300 dpi Downsampling For Images Above: 450 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Maximum Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 2400 dpi Downsampling For Images Above: 3600 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Leave Color Unchanged Intent: DefaultDevice-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: Yes ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: Yes Log DSC Warnings: No Resize Page and Center Artwork for EPS Files: Yes Preserve EPS Information From DSC: Yes Preserve OPI Comments: No Preserve Document Information From DSC: YesOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [2400 2400]>> setpagedevice

Agent Patterns for Ambient Intelligence 683

at which clients and service providers come and go within a physical environment pop-
ulated with mobile devices – impose new challenging system architecture requirements
that are not satisfied by traditional agent patterns proposed for request/response inter-
actions. Moreover, in ambient intelligence applications, we often need to effectively
deal with service composition based on dynamic agreements among autonomous peers,
because group of peers collaborate at different levels and times during the service pro-
viding process life-cycle, analogously to the product life-cycle process introduced by
Virtual Enterprise scenarios [14]. This group communication styles should be used as
architectural alternatives or extensions to middle agents (e.g., matchmakers and bro-
kers), simplifying the application logic and moving context-specific decision-making
from high-level applications or intermediate agents down to the agents called to achieve
a goal. For these reasons, in this paper, we propose novel agent patterns, which allow for
dynamic, collective, and collaborative reconfiguration of service providing schemata.

To illustrate our approach, we use the notion of service oriented organization. We
call service oriented organization (SOO) a set of autonomous software agents that, in a
given location at a given time, coordinate in order to provide a service; in other words,
a SOO is a team of agents whose goal is to deliver a service to its clients. Examples
of SOO are not restricted to Web Services and ambient intelligence; for instance, they
include virtual enterprises or organizations [14, 8], the name of which reflect the ap-
plication area in which they have been adopted, i.e., e-Business. As well, this paper
focuses on a special type of SOO that we call implicit organization broker (IOB), since
it exploits a form of group communication called channelled multicast [3] to avoid
explicit team formation and dynamically agree on the service composition. We will
compare SOO and IOB to traditional agent patterns based on brokers or matchmakers.
As a reference example to illustrate our ideas, we adopt an application scenario from
Peach [15], an ongoing project for the development of an interactive museums guide.
Using the Peach system, users can request information about exhibits; these may be
provided by a variety of information sources and media types (museum server, online
remote servers, video, etc.). As well, we adopt the Tropos software design methodol-
ogy [5, 2] to illustrate and compare the different agent patterns.

Tropos adopts high-level requirements engineering concepts founded on notions
such as actor, agent, role, position, goal, softgoal, task, resource, belief and differ-
ent kinds of social dependency between actors [5, 2, 11]. Therefore, Tropos allows for
a modeling level more abstract than other current methodologies as, e.g., UML and
AUML [1]. Such properties well fit with our major interest, which is in modeling envi-
ronmental constraints that affect and characterize agents’ roles and their intentional and
social relationships, rather than in implementation and/or technological issues.

Section 2 briefly recalls some background notions on Tropos, on service oriented
computing, and on agent patterns. Section 3 describes and discusses an excerpt of the
Peach project, adopted as a reference case to illustrate our arguments. Section 5.1 tries
to overcome some limitations of traditional patterns by proposing two new agent pat-
terns: the Service Oriented Organization and the Implicit Organization Broker. Sec-
tion 5.2 aims at justifying group communication as fundamental to effectively deal with
the proposed patterns, providing a rationale view and describing dynamic aspects. Some
conclusions are given in Section 6.

684 Paolo Bresciani et al.

2 Background

Tropos. The Tropos methodology [2, 5] adopts ideas from Multi Agents Systems tech-
nologies and concepts from requirements engineering through the i* framework. i* is
an organizational modeling framework for early requirements analysis [18], founded on
notions such as actor, agent, role, goal, softgoal, task, resource, and different kinds of
social dependency between actors. Actors represents any active entity, either individ-
ual or collective, and either human or artificial. Thus, an actor may represent a person
or a social group (e.g., an enterprise or a department) or an artificial system, as, e.g.,
an interactive museum guide or each of its components (both hardware and software)
at different levels of granularity. Actors may be further specialized as roles or agents.
An agent represents a physical (human, hardware or software) instance of actor that
performs the assigned activities. A role, instead, represents a specific function that, in
different circumstances, may be executed by different agents – we say that the agent
plays the role. Actors (agents and roles) are used in Tropos to describe different social
dependency and interaction models. In particular, Actor Diagrams (see Figures 1, 3,
and 4) describe the network of social dependencies among actors. An Actor Diagram is
a graph, where each node may represent either an actor, a goal, a softgoal, a task or a
resource. Links between nodes may be used to form paths like: depender → dependum
→ dependee, where the depender and the dependee are actors, and the dependum is ei-
ther a goal, a softgoal, a task or a resource. Each path between two actors indicates that
one actor depends on the other for something (represented by the dependum) so that
the former may attain some goal/softgoal/task/resource. In other terms, a dependency
describes a sort of “agreement” between two actors (the depender and the dependee),
in order to attain the dependum. The depender is the depending actor, and the dependee
the actor who is depended upon. The type of the dependum describes the nature of the
dependency. Goal dependencies are used to represent delegation of responsibility for
fulfilling a goal; softgoal dependencies are similar to goal dependencies, but their ful-
fillment cannot be defined precisely (for instance, the appreciation is subjective, or the
fulfillment can occur only to a given extent); task dependencies are used in situations
where the dependee is required to perform a given activity; and resource dependencies
require the dependee to provide a resource to the depender. As exemplified in Figure 1,
actors are represented as circles1; dependums – goals, softgoals, tasks and resources –
are represented as ovals, clouds, hexagons and rectangles, respectively. Goals and soft-
goals introduced with Actor Diagrams can be further detailed and analyzed by means of
the so called Goals Diagrams [2], in which the rationale of each (soft)goal is described
in terms of goal decompositions, means-end-analysis and the like, as, e.g., in Figure 5.

Tropos spans four phases of Requirements Engineering and Software Engineering
activities [5, 2]: Early Requirements Analysis, Late Requirements Analysis, Architec-
tural Design, and Detailed Design. Its key premise is that agents and goals can be used
as fundamental concepts for all the phases of the software development life cycle. Ac-
tor and Goal Diagrams are adopted from Early Requirements Analysis to architectural
design. Here, we use them to describe the agent patterns we are interested in.

1 We do not adopt any graphical distinction between agents and roles: when needed, we clarify
it in the text.

Agent Patterns for Ambient Intelligence 685

Service oriented computing. Service Oriented Computing (SOC) [12] provides a gen-
eral, unifying paradigm for diverse computing environments such as grids, peer-to-peer
networks, ubiquitous and pervasive computing. A service encapsulates a component
made available on a network by a provider. The interaction between a client and a ser-
vice normally follows a straightforward request/response style, possibly asynchronous;
this is the case with Web Services, which adopt SOAP, XML, and RPC [6, 12] as com-
munication protocol. Two or more services can be aggregated to offer a single, more
complex, service or even a complete business process; the process of aggregation is
called service composition.

As already noticed, MAS naturally accommodate for the SOC paradigm. Since each
agent in a MAS may be either an arbiter or an intermediary for the user’s requested
service, two common agent patterns that appear to be appropriate are the matchmaker
and the broker (see, e.g., [10, 16]).

Agent patterns for SOC. To accommodate the different settings and agents that can be
involved, and with the different roles that – from time to time – can be played by each
agent, a pattern based approach for the description and design of the MAS architectures
for SOC systems can be adopted. An agent pattern can be used to describe a problem
commonly found in MAS design and to prescribe a flexible solution for that problem,
so to ease the reuse of that solution [11, 17, 9]. The literature on Tropos adopts ideas
from social patterns [5, 11] to focus on social and intentional aspects that are recurrent
in multi-agent or cooperative systems. Here, we adopt Actor and Goal Diagrams to
characterize MAS design patterns, focusing on how the goals assigned to each agent2

are fulfilled [2, 11], rather than on how agents communicate with each other. In the very
spirit of Tropos, which naturally carries out the importance of analyzing each problem
at a high abstraction level, allowing to reduce and easily manage at ‘design time’ the
system components complexity, we aim at enhancing the reuse of design experience
and knowledge by means of the adoption of agent patterns.

In our context, such patterns have to cope with the important issue of locating infor-
mation/service providers, which is an architectural requirement. Indeed, as also inves-
tigated in [13], such a requirements strongly affect coordination issues in decentralized
(pure) peer-to-peer scenarios. Thus, to support the peer-to-peer scenario, the match-
maker agent pattern (see Figure 1a) play a key/centric role in order to allow the whole
system for the searching and matching capabilities, e.g., see [16].

At the same time, the focus on the service providing process life-cycle puts the
consumer in the center, and when the consumer demands novel services the system ar-
chitecture should provide them without overwhelming her with additional interactions.
Moreover, in a decentralized scenario, it may have several local failures may happen,
when trying to locate new services; hence, a huge number of interactions, before reach-
ing the related provider, are possible. Of course, the reduction of the interaction com-
plexity decreases the customer overload. Such a requirement calls for a broker pattern
too, as detailed in Figure 1b (e.g., see [10]).

2 Indeed, accordingly with the Tropos terminology, we should speak about roles, but we drop,
here, this distinction, to ease the reading of the diagrams.

686 Paolo Bresciani et al.

locate
good

provider

Matchmaker

Provider

advertise
service

perform
the

service

Broker

Provider

(b)(a)

Consumer

provide
service

description

Consumer

provide
service

forward
requested

service

provide
service

description

advertise
service

Actor

goal

softgoal

task

resource

goal dependency

dependeedepender

dependum

Fig. 1. a) Matchmaker agent pattern; b) Broker agent pattern, depicted by means of the Tropos
Actor Diagrams.

The Tropos diagram, of Figure 1.a, shows that each time a user’s information/service
request arrives3, Consumer depends on Matchmaker to locate good provider. On the
contrary, Figure 1.b shows that Consumer depends on Broker in order to forward re-
quested service, that is, Broker plays an intermediary role between Provider and Con-
sumer. In essence, both Broker and Matchmaker depend on Provider to advertise ser-
vice(s). Namely, the two patterns skills consist of mediating, among both consumers
and providers, for some synergic collaborations to satisfy global goals. In particular,
Matchmaker lets Consumer directly interact with Provider, while Broker handles all the
interactions between Consumer and Provider.

3 A Reference Scenario

The Peach project [15] focuses on the development of a mobile museum visiting guide
system. The whole system is a MAS, which has been developed following the Tropos
methodology. Indeed, agents perform their actions while situated in a particular envi-
ronment that they can sense and affect. More specifically, in the typical Peach museum
visiting guide scenario, a user (the visitor) is provided with several environmental in-
teraction devices. The most evident to her is a personal hand-held mobile I/O device,
namely a PDA. Other devices include: i) passive localization hot-spots, based on tri-
angularization of signals coming from the PDA; ii) (pro)active stationary displays of
different sizes and with different audio output quality. Depending on the dimensions,
the displays may be used to deliver visual/audio information (images and/or motion
pictures possibly with audio comments; text) to a single user at a time, or to a group of
users.

Given this environment, let us start from the following possible user–system inter-
action scenario:

Example 1 (explicit communication). A museum visitor requests some information
during her tour by using her mobile device. To deliver on such a goal, the PDA con-

3 In the context of our simplified Peach example (see below), the Consumer is the role plaid by
the software agent acting as the interface for the human user, that is the User Assistant.

Agent Patterns for Ambient Intelligence 687

Fig. 2. Overview of the actor interactions.

tains an agent (the User Assistant) which, on behalf of the user, sends a presentation
request to the museum central system. Here, three system actors take the responsibil-
ity of generating a presentation: the Presentation Composer, the User Modeler and the
Information Mediator.

Still using Tropos, we can get to detailed design and model the communication
dimension of the system actors. To this end, Tropos adopts AUML [1] interaction dia-
grams. The communication diagram of Figure 2 presents the sequence of events from
the time a request for presentation is issued until the presentation is presented to the
user. The User Assistant, the Presentation Composer, and the User Modeler are generic
roles that may be played by different software agents, e.g., there may be several differ-
ent information mediators (for video, audio, text, pictures, animation, local and remote
information sources and more), there may be several user assistants with different ca-
pabilities (hand-held devices, desk-top stations, wall mounted large plasma screens and
more), and there may also be several different user modelers implementing various
techniques to get users’ profiles.

In any case, here, we are not interested in the specific agents implementing such
functionalities (i.e., playing the assigned role), but, instead, in the roles themselves. In
fact, they – i.e., the User Assistants, the Presentation Composer, and the Information
Mediator – form ad-hoc service-oriented organizations, in order to achieve the service
goal. Each SOO is characterized by members that collaborate at different levels and
times during the service providing process life-cycle. After the goal is satisfied, the
organization is dissolved and a new one will be formed – possibly including different
agents, provided they play the listed roles – to serve a new request.

3.1 Discussion

The previous section motivates the need of some agent patterns to effectively deal with
distributed computing issues (e.g., see [11, 17, 16, 10]).

Nevertheless, if we proceed by adopting traditional agent patterns, as, e.g., the
matchmaker and broker introduced in Section 2, probably we could not be able to cap-
ture few but interesting and vital architectural requirements that arise from our ambient
intelligence scenario, specially if we want to fully exploit the flexibility – in terms of
self organizing presentation delivery channels – that can be provided.

688 Paolo Bresciani et al.

In particular, to motivate our assertion, let us consider the following new scenario:

Example 2 (implicit communication). Let us assume that, while walking around, the
user is approaching some presentation devices that are more comfortable and suitable
to handle the presentation than the mobile device (User Assistant), e.g., in terms of pixel
resolution and audio quality. So, we may assume the User Assistant is autonomously
capable to exploit its intelligent behavior by negotiating the most convenient presenta-
tion, on behalf of its human owner. Let us also assume that there are several different
Presentation Composers for each single device (capable to generate video, text, ani-
mated explanation, audio, etc.) and that each Presentation Composer relies on different
Information Mediators to provide the information required for presentation generation.
Moreover, we may also assume that each Presentation Composer is able to proactively
propose its best services (in terms of available or conveniently producible presentations)
to the User Assistant, possibly through some mediation interface. As well, we expect
that all the services (negotiated or proposed) are “dynamically validated”, that is, due
to the fact that the environment and the user location are quickly changing, only the
appropriate services are considered.

Such a scenario calls for architecture flexibility in terms of dynamic group recon-
figuration to support SOOs involvement. Traditional approaches allow for intentional
relationships and request/response communication protocols among single agents only,
and not among group of agents [9–11, 17]. More specifically, we may assume that the
User Assistant starts an interaction session that triggers the involvement of a group of
system actors all with the ability of Presentation Composer, which in turn trigger the
involvement of a group of system actors all with the ability of Information Mediator.
Each Presentation Composer, instead, relays on the User Modeler to know the user
profile to correctly build up a user-tailored presentation.

Therefore, such an architecture has to adopt group communication in order to sup-
port an ‘intelligent’ pervasive computing model among users’ assistant devices and the
system actor information/service providers. To cope with these new challenges, we can
imagine that the system agents exploit a form of ‘implicit communication’, where they
can autonomously build up SOOs in order to satisfy a request at the best they can do
at that time. This is not possible by means of traditional approaches that adopt simple
request/response based communication styles (e.g., [16]). In fact, as shown in Figure 1,
using classical matchmaker and broker approaches, we assume that there is an advertise
service dependency (e.g., based on a preliminary registration phase) forcing the system
actors to rely on a centralized computing model.

4 Agent Patterns-Based Detailed Design

The discussion above highlights the limits of traditional patterns when applied to our
ambient intelligence pervasive computing scenario; hence, the necessity of characteriz-
ing our system architecture by means of new agent patterns.

4.1 The Service Oriented Organization

In distributed computing and especially in ‘intelligent’ pervasive computing based sce-
narios, each time an information consumer explicitly or implicitly causes a specific

Agent Patterns for Ambient Intelligence 689

Consumer

 Organization
 Matchmaker

locate
good

provider

InitiatorProviders
Organizer

Provider(s) perform
the service

notify
service
status

acquaintances
increasing

agree
service

formulate
request

propose
service

call for
service

Fig. 3. Actor Diagram for the Service Oriented Organization pattern.

service request, it inherently needs a searching capability in order to locate the service
provider. In particular, in our scenario, when the User Assistants is looking for a Pre-
sentation Composer in order to ask for a personalized presentation, a matchmaker (e.g.,
the one presented in Section 2) or a facilitator architecture is required [10, 11, 13, 16].

As previously discussed, the matchmaker pattern illustrated in Section 2 does not
completely fit the requirements of our pervasive computing scenario (Example 2). Here,
we define a new agent pattern – the Service Oriented Organization pattern – illustrated
in Figure 3, which extends and adapts the matchmaker pattern of Figure 1.a. Here, the
actor Matchmaker is replaced by Organization Matchmaker, which is further decom-
posed in two component system actors: Service oriented Organization and Initiator. The
dependencies between Consumer and Organization Matchmaker (or, more specifically,
Initiator) and between Consumer and Provider(s) are as before. The main difference, in-
stead, is that now there is no advertise service goal dependency between Organization
Matchmaker and Provider(s). In fact, our scenario call for dynamic group reconfigura-
tion, which cannot be provided on the basis of a pre-declared and centrally recorded set
of service capabilities, as foreseen in the classical matchmaker approach. The solution
we propose, instead, is based on a proactive and, specially, dynamic capability of service
proposal, on the basis of the actual, current requests or needs of services. In particular,
our system low level communication infrastructure is based on a group communication,
which has been designed to support channelled multicast [3]. That is, a form of group
communication that allows messages addressed to a single agent or a group of agents
(Provider(s)) to be received by everybody tuned on the channel, i.e., the agent “intro-
spection” capability described in Section 5. Thus, Provider(s) depends now on Organi-
zation Matchmaker, or, more specifically, on Providers Organizer to have a call for ser-
vice. That is, because of each SOO member adopts an IP channelled multicast approach
that allows to overhear on channels (see Section 5 for details), the organizer simply
sends its service request message on a specific channel and it waits for some providers
offers4. On the basis of such calls, Provider(s) may notify their current services avail-
ability. Thus, the Providers Organizer depends on Provider(s) for propose service and,

4 In fact, channels are classified by topics and each provider is free to overhear on the preferred
channels according to its main interest and capabilities.

690 Paolo Bresciani et al.

vice-versa, Provider(s) depend on the Providers Organizer for the final agreement on
service provision (goal agree service). Moreover, in an ‘intelligent’ pervasive comput-
ing based scenario, the system awareness allows to proactively propose services to the
consumer without any explicit service request. Thus, Initiator acts as interface towards
Consumer. It is able to interpret Consumer’s requests and, specially, proactively pro-
pose not explicitly requested services, on the basis of Consumer’s profile and previous
interaction history5. To this end, Initiator depends on Providers Organizer to get new
acquaintances about Provider(s) and their services, while Providers Organizer depends
on the Initiator to formulate request. In this way, we can drop the dependency Provide
service description between Matchmaker and Consumer, which is instead present in the
traditional matchmaker pattern. Finally, Initiator requires that Provider(s) timely notify
service status in order to only propose active services.

4.2 The Implicit Organization Broker

As observed in Section 1, ambient intelligence environments are often characterized by
intermitted communication channels. This problem is even more relevant when proac-
tive broadcasting is adopted, as in the scenario suggested by Example 2. In this case
communications to/from the User Assistant need to be reduced at a minimum. To this
end, we propose here to exploit the implicit communication paradigm towards the adop-
tion of an implicit organizations broker (IOB) agent pattern that is inspired to the im-
plicit organization introduced by [4]. That is, we define the IOB as a SOO formed by
all the agents tuned on the same channel to play the same role (i.e., having same com-
munication API) and willing to coordinate their actions. The term ‘implicit’ highlights
the fact that there is no group formation phase – since joining an organization is just
a matter of tuning on a channel – and no name for it – since the role and the channel
uniquely identify the organization. Its members play the same role but they may do it
in different ways; redundancy (as in fault tolerant and load balanced systems) is just a
particular case where agents happen to be perfectly interchangeable. In particular, we
can consider to have implicit organizations playing a kind of broker role. In other terms,
each time the system perceives the visitor’s information needs, the system actors set up
a SOO (as described in Section 4.1), which, in addition to the already presented match-
making capabilities, can also manage the whole service I/O process; that is, the SOO
is able to autonomously and proactively cope with the whole service providing process
life cycle. Such a system ability enhances the ambient intelligence awareness, a system
requirement that cannot be captured by adopting traditional agent patterns [10, 11].

Figure 4 introduces a IOB pattern as a refinement/adaptation of the SOO pattern in-
troduced in Section 4.1. Provider(s) are now part of the organization itself, which plays
the role of an Organization Broker. Thus, the latter include both Providers Organizer
and Provider(s) (see the inside of the dashed-line rectangle). It is worth noticing that the
IOB members are characterized by the same (required) skill (see ahead Section 5).

The differences between the two traditional agent patterns of Figure 1 are naturally
reflected also between the two patterns illustrated in Figures 3 and 4. In particular, Fig-

5 For example, every system actor, through environmental sensors, can perceive and profile users
during their visits across museum media services, as in the scenario of Example 2.

Agent Patterns for Ambient Intelligence 691

Fig. 4. Actor Diagram for the Implicit Organization Broker (IOB) pattern.

ure 3 tries to capture intentional aspects for more general group communication scenar-
ios, i.e., general SOO. On the contrary, Figure 4 gives a level of pattern based detailed
design focusing more on special kind of SOO, tailor-made for ambient intelligence
scenarios. In other words, Figure 3 does not consider a strictly ‘intelligent’ pervasive
computing scenario that, on the contrary, characterizes our IOB of Figure 4.

As well, it is worth noticing that the IOB pattern incorporate in the Initiator role
both the roles of Consumer and Initiator of the SOO pattern. As already said, this is a
consequence of the fact that, in ambient intelligence, some system actors concurrently
play the consumer and initiator roles, which allows the system to enhance autonomy
and proactivity skills. Moreover, and similarly to what happen in Figure 1.b between the
Consumer and the Broker, in Figure 4, the Initiator depends on the Organization Broker
– or, more specifically, on the Providers Organizer – to forward requested service, in
order to avoid User Assistant message/interaction overloading. Nevertheless, the IOB
pattern allows for acquaintance increasing (for Initiator), so to consent a more precise
service requests during future interactions, as already foreseen for the generic Service
Oriented Organization pattern.

5 Supporting Implicit Organization Brokers

The two agent patterns Service Oriented Organization and the Implicit Organization
Broker presented so forth have been experimented within the Peach project to build
an interactive, pervasive, museum guide. As mentioned, our patterns require a group
communication infrastructure. To this end, we adopt the LoudVoice [4] experimental
communication infrastructure based on channelled multicast and developed at our insti-
tute. Specifically, LoudVoice uses the fast but inherently unreliable IP multicast – which
is not a major limitation in our domain, since the communication media in use are unre-
liable by their own nature. However, we had to deal with message losses and temporary
network partitions by carefully crafting protocols and using time-based mechanisms to
ensure consistency of mutual beliefs within organizations.

692 Paolo Bresciani et al.

Fig. 5. Goal Diagram for an agent’s role characterization by means of its capabilities.

5.1 Agent Roles Characterization

Analyzing agent roles means figuring out and characterizing its main capabilities (e.g.,
internal and external services) required to achieve its intentional dependencies already
identified by the agent patterns analysis of Section 4. Note that, a capability (or skill)
is not necessarily justified by external requests (like a service), but it can be an internal
agent characteristic, required to enhance its autonomous and proactive behavior. To deal
with the rationale aspects of an agent at ‘design time’, that is, in order to look inside
and to understand how an agent exploits its capabilities, we adopt the Goal Modeling
Activity of Tropos [2]. In Figure 5, we adopt the means-end and AND/OR decomposition
reasoning techniques of the Goal Modeling Activity [2, 5, 18]. Means-end analysis aims
at identifying goals, tasks, and resources that provide means for achieving a given goal.
AND/OR decomposition analysis combines AND and OR decompositions of a root
goal into subgoals, modeling a finer goal structure. Notice that, we have modeled every
agent capability as a goal to be achieved.

For the sake of briefness, here we consider only the IOB pattern. According to Fig-
ures 5 and 4, each time Initiator formulates a request, Providers Organizer achieves its
main goal cope with the request (i.e., the goal that Providers Organizer internally adopts
to satisfy Initiator’s request) relying on its three principal skills: define providers, deal
with fipa-acl performatives, and support organizational communication. The principal
goal success depends on the satisfaction of all the three goals (i.e., AND decomposi-
tion). For the sake of simplicity, Figure 5 does not consider Initiator and its intentional
relationships. An adequate organizational communication infrastructure is used to en-
hance the system actor autonomous and proactive behavior by means of group commu-
nication based on channelled multicast [3] (see goal provide channelled multicast) that
allows messages to be exchanged over open channels identified by topic of conversa-
tion. Thus, a proper structuring of conversations among agents allows every listener to

Agent Patterns for Ambient Intelligence 693

Fig. 6. Interaction of organizations.

capture its partner intentions without any explicit request, thanks to its agent introspec-
tion skill (see goal allow agents introspection). Indeed, each actor is able to overhear on
specific channels every ongoing interaction; hence, it can choose the best role to play in
order to satisfy a goal, provide a resource, perform a task, without any external decision
control, but only according to its internal beliefs and desires.

Exploiting the provide channelled multicast ability, each actor can decide by itself
what channels to listen to, by means of a subscription phase (represented by the tasks
discover channels and maintain a channel list). This communication mechanisms well
support group communication for service oriented and implicit organizations composed
by members with the same interests or skills. Such organizations assist the User Assis-
tant avoiding it to know how directly interact with the museum multi-media services.

5.2 Group Communication: Dynamics

As described earlier, the museum visitor guide system is composed of several different
types of agents. Rather than by individual agents, most components are formed by a
group of coordinated agents, as presented by Example 2 of Section 3. Modeling this
example requires the representation of implicit organizations, which cannot be done
by a regular AUML communication diagram, as presented, e.g., in [2, 5]. Therefore,
in Figure 6, we propose a new type of diagram that deals with the group communi-
cation features required by the scenario introduced with Example 2. Here, the shaded
rectangles and the dashed lines below them represent the implicit organizations, and
the gray rectangles represent the communication internal to implicit organizations. Re-
quests sent to an organization are presented as arrows terminating in a dot at the border

694 Paolo Bresciani et al.

of the organization; the organization reply is presented by an arrow starting from a dot
on the organization border. Obviously, we consider an asynchronous message-based
communication model.

In the example diagram of Figure 6, the request for presentation is initiated by a cer-
tain User Assistant on behalf of a specific user. The request is addressed to the Implicit
Organization of Presentation Composers. Presentation composers have different capa-
bilities and require different resources. Hence every presentation composer requests
user information on the user model and presentation data (availability, constraints, etc.)
from the Implicit Organization of Information Mediators. In turn, the implicit organiza-
tion of information mediators holds an internal conversation. Each member suggests the
service it can provide. The “best” service is selected and returned, as a group decision,
to the requesting presentation composer. At this stage, the presentation composers re-
quest additional information to the Implicit Organization of User Assistants, regarding
the availability of assistants capable to show the presentation being planned. When all
the information has been received, the implicit organization of presentation composers
can reason and decide on the best presentation to prepare. This will be sent from the
composers as a group response to the selected (user) assistant.

6 Conclusions

Ambient intelligence scenarios characterized by service oriented organizations, where
group of agents collaborate at different levels and times during the service providing
life-cycle, generates new software architectural requirements that traditional agent pat-
terns cannot satisfy. For example, ‘intelligent’ pervasive computing and peer-to-peer
computing models naturally support group communication for ambient intelligence,
but they also call for architecture flexibility in terms of dynamic group reconfigura-
tion. Traditional request/response communication protocols are not appropriate to cope
with service negotiation and aggregation that must be ‘dynamically validate’, since the
environment conditions and the user location are quickly changing.

For such reasons, we propose two new agent patterns (Service Oriented Organiza-
tion and Implicit Organization Broker) and compare them with traditional patterns [10,
11]. Specifically, we adopt the agent oriented software development methodology Tro-
pos [2, 5], to effectively figure out the new requirements. For example, using Tropos,
we can keep the agent conversation and social levels independent from complex co-
ordination activities, thanks to an inherently pure peer-to-peer computing model [13].
Such a way of modeling has been thought for enriching the Tropos methodology de-
tailed design phase with new capabilities, more oriented towards sophisticated software
agents, which requires advanced modeling mechanisms to better fit group communica-
tion, goals, and negotiations. Thus, we have been able to capture important aspects of
ambient intelligence requirements and to build up new agent patterns, more flexible and
reusable than the traditional ones.

References

1. B. Bauer, J. P. Muller, and J. Odell. Agent uml: A formalism for specifying multiagent soft-
ware systems. International Journal of Software Engineering and Knowledge Engineering,
11(3):1–24, 2001.

Agent Patterns for Ambient Intelligence 695

2. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An agent-
oriented software development methodology. Autonomous agents and Multi-agent Systems
(JAAMAS), 8(3):203–236, May 2004.

3. P. Busetta, A. Donà, and M. Nori. Channeled multicast for group communications. In
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems, pages 1280–1287. ACM Press, 2002.

4. P. Busetta, M. Merzi, S. Rossi, and F. Legras. Intra-role coordination using group commu-
nication: A preliminary report. In F. Dignum, editor, Advances in Agent Communication,
LNAI. Springer Verlag (to Appear), 2003.

5. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven information systems
engineering: The tropos project. Information Systems (27), pages 365–389, Elsevier, Ams-
terdam, The Netherlands, 2002.

6. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in web services.
Commun. ACM, 46(10):29–34, 2003.

7. K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgelman. Scenarios for am-
bient intelligence in 2010. Technical report, Information Society Technologies Programme
of the European Union Commission (IST), Feb. 2001. http://www.cordis.lu/ist/.

8. U. J. Franke. Managing Virtual Web Organizations in the 21th century: Issues and Chal-
lenges. Idea Group Publishing, Pennsylvania, 2001.

9. S. Hayden, C. Carrick, and Q. Yang. Architectural design patterns for multiagent coordina-
tion. In Proc. of the 3rd Int. Conf. on Agent Systems (Agents’99), 1999.

10. M. Klusch and K. Sycara. Brokering and matchmaking for coordination of agent societies: A
survey. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors, Coordination of
Internet Agents: Models, Technologies, and Applications, pages 197–224. Springer-Verlag,
Mar. 2001.

11. M. Kolp, P. Giorgini, and J. Mylopoulos. A goal-based organizational perspective on multi-
agents architectures. In Proceedings of the Eighth International Workshop on Agent Theo-
ries, architectures, and languages (ATAL-2001), 2001.

12. M. P. Papazoglou and D. Georgakopoulos. Introduction to the special section on Service
Oriented Computing. Commun. ACM, 46(10):24–28, 2003.

13. L. Penserini, L. Liu, J. Mylopoulos, M. Panti, and L. Spalazzi. Cooperation strategies for
agent-based p2p systems. WIAS: Web Intelligence and Agent Systems: An International
Journal, IOS Press, 1(1):3–21, 2003.

14. L. Penserini, L. Spalazzi, and M. Panti. A p2p-based infrastructure for virtual-enterprise’s
supply-chain management. In Proc. of the Sixth Int. Conference on Enterprise Information
Systems (ICEIS-04). INSTICC-Institute for Systems and Technologies of Information, Con-
trol and Communication, vol.4, pp 316-321, 2004.

15. O. Stock and M. Zancanaro. Intelligent Interactive Information Presentation for Cultural
Tourism. In Proc. of the International CLASS Workshop on Natural Intelligent and Effective
Interaction in Multimodal Dialogue Systems, Copenhagen, Denmark, 28-29 June 2002.

16. K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among het-
erogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems,
5(2):173–203, 2002.

17. Y. Tahara, A. Ohsuga, and S. Honiden. Agent system development method based on agent
patterns. In Proc. of the 21st Int. Conf. on Software Engineering (ICSE’99). IEEE Computer
Society Press, 1999.

18. E. Yu. Modeling Strategic Relationships for Process Reengineering. PhD thesis, Department
of Computer Science, University of Toronto, Toronto, Canada, 1995.

