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Abstract. Agent-Oriented methodologies that have been recentlygsex for
engineering distributed systems tend to adopt a modeldl@gg@oach to software
development, that is they devise a development processl lmasthe definition
of a specific set of models for each steps in the analysis andaftware design
phases.

To be put into practice, this approach demands clear guiekelior building and
refining models along the software development processelssg/flexible mod-
eling tools which integrates automatic verification tecjugis at support of model
validation.

In this paper we describe a modeling environment which nateg an Agent-
Oriented (AO) modeling tool with other tools, such as a madedcker for the
verification of formal properties of the model and a librarhigh implements
graph transformation techniques which can be used to stippmtel refinement
as well as model transformations. In designing it we took @tcount recom-
mendations from the OMG’s Model-Driven Architecture iatfive.

We illustrate the modeling environment architecture, gigtails on the AO mod-
eling tool and on the components that allows for the intégmatith other tools.
Examples of how modeling and validation can be interleaveti supported by
the modeling environment are given.

1 Introduction

Conceptual modeling in software system engineering isidensd a best practice
which favors the communication among the stakeholderdvedoin the development
process and supports project documentation. In Objech€ideapproaches this prac-
tice has become popular thanks to the diffusion of CASE tsath as UML modelers
which provide an effective support for the definition of a ceptual model via building
diagrammatic representations (views) of the model itdédivertheless, UML model-
ing is still affected by limits such as subjectivity and difflty in exploiting automatic
verification techniques for model validation.

Conceptual modeling assumes an even more critical role etroased develop-
ment approaches to software engineering. In model-basedagenent, a model serves
as the primary representation of a system under developihehbuld be able to cap-
ture different properties of the system and of its environtnguch as domain features
and customer expectations and it has to be refined and tramsficto a model of the
architecture and detail design of the system-to-be, anthfittecode. The model-based



approach demands tools that support model specificatioriding adequate expres-

sive power, for instance allowing the integration of speatiion languages which are

suitable to represent dynamic properties with languagéshrdre appropriate to model

structural properties, as well as tools that provide trams&tion mechanisms to execute
the translation steps in a transparent and simple manner.

Current Agent-Oriented (AO) methodologies for enginegmiistributed systems
tend to adopt a model-based development approach. Thegfatleda set of models
(or views on a model) corresponding to specific steps in ttedyais and design of
software. For instance, GAIA [31] considers a four stagex@ss which starts upon
the collection of requirements, with an analysis steppfedd by architectural design,
detailed design and implementation. For both the analysisdesign steps, specific
models are to be defined. Differently from the process pregpas GAIA, theTropos
methodology prescribes a preliminary stage, called eafuirements, followed by late
requirements, architectural design, detailed designmpteimentation steps [7]. GAIA
does not commit to a specific modeling language whitgposbuilds its own notation
upon thei* framework [30]. Other AO methodologies propose their owrdelmg lan-
guage defining appropriate UML stereotypes, for instancBRAProcess for Agent
Societies Specification and Implementation) [4] and MESEAY. More recently, the
AUML [1] effort which aims at extending UML with additionabstraction and nota-
tion has been strengthened inside the FIPA initiative. Blok bf effective CASE tools
is still limiting the experimentation of these methodokgin industrial settings and,
more generally, makes difficult their diffusion.

In this paper, we describe an environment for supporting dehdriven software
development approach adopting an Agent Oriented methggolts architecture al-
lows for a flexible integration of different tools. The cumteversion includes a mod-
eler that supports the analyst when building an informatjgation using thélropos
methodology and a component that allows for its automagiesfiormation into a for-
mal specification which can be verified by a model-checkee. ibdeling environment
supports the adoption of a framework, that has been prdyvipusposed [29], which
rests on a light integration of informal and formal languagdoreover, the platform
includes the interface to a graph rewriting library, i. ee tttributed Graph Grammar
(AGG) system [13] that will be used to support model refinenfn]. In designing it
we are taking into account basic directives, such as metdetimy standards, coming
from the Model-Driven Architecture (MDA) initiative of theMG.

The paper is structured as follows. Section 2 discusses Iasiivations of this
work and provides examples of how visual modeling and modefieation are ex-
ploited in our approach. Relationships with the Model-BrivArchitecture (MDA) ini-
tiative of the OMG, which is proposing a model-based apprdacsoftware engineer-
ing [8] and it is going to guide the development in this aregtiyviding technological
infrastructures and standards [20], are also pointed @dtié 3, presents a practi-
cal approach to interleaving visual modeling a model vaiitavia model-checking
techniques and the main requirements of a tool that aimspgitosting this approach;
section 4, describes the modeling environment architeaod how to use it. Related
works are discussed in Section 5. Finally, conclusion ataréuwork are presented in
Section 6.



2 Background

2.1 TheTropos methodology

The Troposmethodology [7, 28] is an agent-oriented software deveknmethod-
ology which provides a visual modeling language that candszluo define both an
informal specification and a formal one. From a practicahpof view, the method-
ology guides the software engineer in building an inforncahceptual model that is
incrementally refined and extended from an early requirésnerodel, namely a rep-
resentation of the organizational setting where the sysdtebre will be introduced, to
system design artifacts, according to a requirementedi@pproach.

TheTroposlanguage allows to model intentional and social concepts) as those
of actor and goal, and set of relationships, such as actaramcy, goal decomposi-
tion, means-end and contribution relationships. Thesmems support the modeling
of basic goal analysis techniques. Actor models an entity that has strategic goals and
intentionality, such as a physical agent, a role with resfmea given context, or a set of
roles (i.e., a position)Goalsrepresent the strategic interests of actors. Two basic type
of goals are considered, namely hard and soft goals, thes lzdtving no clear-cut defi-
nition and/or criteria as to whether they are satisfied.dafis are useful for modeling
goal/plan qualities and non functional requirementslependencietween two actors
indicates that an actor depends on another in order to achigwoal, execute a plan, or
exploit a resource.

Basic modeling activities ifiroposinclude the identification of the actors with their
goals and of the actors mutual dependencies. Each goal cambged from the point
of view of the individual actor considering: possible sulats AND decomposition
means to satisfy these goafs€ans-end relationshjipalternative ways to achieve a spe-
cific goal OR decompositigngoals or plans or resources that can contribute positivel
or negatively to its achievemeradntributior). All these models can be depicted using
two basic types of diagrams, namely, actor and goal diagfamexample is given in
Figure 1). A detailed account of modeling activities candoed in [7].

An informal specification infroposprovides a “static” view of the organizational
setting and of the dependencies among the different elenogtite domain. A Formal
Tropos(FT hereafter on) specification [14, 16] extends a specificatiitim annotations
that characterize the valid behaviors of the modekTrthe emphasis goes in modeling
the “strategic” aspects of the evolutions of the model. TAu& T specification consists
of a sequence of entity declarations such as, actors, goalsjependencies which con-
tain temporal constraints expressed in Linear Temporald@gd L hereafter on). These
constraints describe the valid lifetime evolutions of thedel in terms of temporal evo-
lutions of set of instances of the model’s entities. Foransg, two critical moments in
the life-cycle of goals and dependencies are the instatiteofcreationandfulfillment
The creation of a goal is interpreted as the moment in whietottner or depender ex-
pects or desires to achieve the goal, while its fulfillmerthis time in which the goal
condition is actually achieved. IRT, creation and fulfillment constraints can be used
to define conditions for these two moments in the life of ititamal elements. Creation
and fulfillment conditions cab be used, for defining constsaon the lifetimes of sub-
goals in a goal decomposition (sub-goals are created hftgrarent goal and should be



fulfilled before the parent goal can be fulfilled), or for défigthe responsiveness of an
actor with respect to the dependencies (an actor can takemarediately of some of
them while delaying other dependencies).

FT also providesnvariant constraints that define conditions that should be true
throughout the lifetime of model instances. Typically,anants define relations on the
possible values of attributes, or cardinality constradmt¢he instances of a given entity.

2.2 Interleaving visual modeling and model validation
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Fig. 1. A Troposgoal diagram built by the analyst.
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Goal Dependency OrchardsData
Depender Advisor
Dependee Producer
Mode achieve
Creation condition
3 ohd: OrchardHistoricalData ((ohd.actor = depender) A— Fulfilled(ohd))
Invariant
3 ohd : OrchardHistoricalData (ohd.actor = depender)

Fig. 2. FT specification of the goal dependenaschards data, shown in theTroposdiagram in
Figure 1, between thadvisor and theProducer.

In [29] we proposed a framework which rests on the interleguaf informal mod-
eling with automatic model validation.
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Fig. 3. Frame sequence depicting a trace produced by the modédtethedile verifying the
satisfiability of goal labeled (A) in Figure 1.

In practice, we consider the possibility to formally anrietthe entities, which are
diagrammatically depicted in a visual model, and to cheek#sulting specification via
model-checking techniques, in order to discover new caimgs in the domain that are
able to guide the refinement of the model and to produce sosithat can be analyzed
by a stakeholder for their validation. This process can teadcombinatorial explosion
when dealing with formal representations of a whole modekdntrol this complexity
component we proposed two strategies: from one side the fusELologics and of
symbolic model checking; from the other the set up of a cheokedure that can be
carried on only for subsets of the model (e.g. goal dependehérarchies).

In Figure 1, is described Broposdiagram that can be enriched wiéT properties
via annotations. In particular, it represents a goal deasitipn of the (A)-labeled goal,
this goal can be fulfilled if at least one of the goals of theateposition is fulfilled (OR-
Goaldecomposition). This static model can be annotated as t@epic Figure 2 that
shows how the LTL clauses are integrated in an entity detdberfor describing, for in-
stance, the valid creation and invariant conditions forgethelency. This representation
can be checked in order to verify its properties, such asatigfigbility of the goal (A),
by querying the underlying formal representation using etathecking techniques. In
this case, the result of the query can be visualized as a segqu# frames, showed
in Figure 3 that describes the fulfilment of the goal (A). Ediame corresponds to a
step of the trace produced by the model-checker, where gstrices are created and
fullfilled (in gray color) respectively.

Another type of property that can be checked is consideréugiriollowing exam-
ple; it focuses on the possibility that more than one agtién be carried on together.
It basically correspond to the following question: is thedabable to capture possi-
ble mistakes in the ordering of goal fulfillment? Considgrthe example depicted in
Figure 1, the property to be checked can be informally stasefdbllow:

In the case more than orlab data activities can be performed beforenaon-
itoring device data, is it always the case that all instanceslalb data relative



to the same orchard have to be fulfilled before fulfilling thenitoring device
data for the orchard?

This query can be formulated as follows: are all the instafkab data fulfilled before
all the instances afonitoring device data? which can be rewritten as the following
LTL formula:

Global Assertion F (
V a: Advisor (V hda: HistoricalDataAnalysis (hda.actor = a —
vV mdd : MonitoringDeviceData (mdd.hda = hda —
Justfulfilled(hda) — V Id : LabData (Id.hda = hda — Fulfilled(Id))))))

In this case, T-DOL generates a counter-example scenario, illustrated byahetarts
diagrams depicted in Figure 4 where the bars represenféheyicle of four instances of
goals specified in the visual modhlstorical data analysis, lab data [A], lab data [B]
andmonitoring device data. Every single instance of goal can go from a “not created”
status, the dashed area of the bar, to a “created” statukgltitgray area of the bar to

a “fulfilled” status, the dark gray area of the bar. The scienstrows that it is possible
to fulfill the second instance déb data (LD[B] in the diagram) after thenonitoring
device data(MDD) has already been fulfilled. Indeed, annotations havbe added

Historical ; - - ; -
Data Analysis |
Lab Data [A]
Lab Data [B]

Monitoring
Device Data

LD[A] MDD LD[B]

Fig. 4. Another validation scenario for the gdab data with two instances.

to theFT model in order to implement the constraints on the tempadgrs that are
agreed with the stakeholder, refining the existing visuatlehoOn the other hand, the
understanding of these constraints is very important foegpdunderstanding of the
whole application domain, and their elicitation is veryfidiflt in a purely informal
framework.

The validation, analysis and refinement, is a recurrentgg®cthat is undertaken
during the different phases of software development (eglyerequirement, late re-
quirement, architectural designTmopos.

2.3 Current trends in developing CASE tools

In developing tools for supporting the described processareetaking into account
emerging guidelines and standards from the OMG’ Model-@&rirchitecture (MDA)
initiative which proposes an approach to software devebtrhased on modeling and



automated mapping of models to code. A basic motivation ofAM$that of improv-
ing quality, by allowing for the reuse of models and mappibhgsveen models, and
software maintainability by favoring a better consisteheyween models and code.
One of the basic concepts in MDA is that of distinguishingiesn a software design
which is platform independent (Platform-Independent MsdeIM) from a software
design that includes all the platform specific details Bfat-Specific Models, PSM).
The two models can be related through a transformation psoséich converts a PIM
to its semantically equivalent PSM. A PIM model can be theltesf a chain of trans-
formations between different abstraction level PIMs, wahitay include, as in our case,
interleaving of formal and informal specification languagéven if the MDA initiative
refers mainly to Object Oriented software development argystem design activities,
we think that the emerging ideas are of interest to Agentr@eksoftware engineering
as well [17].

In MDA, the use of various modeling concepts and notatiorferigsseen with the
idea to favor the exploitation of existing specificationdaages that are more appro-
priate to define views on dynamic aspects rather than oftstralcaspects of a given
model.

From a practical point of view, the MDA initiative is propagi a standard to which
the meta-models of the specification languages used in thieling process must be
compliant with, that is the Meta Object Facility (MOF), andet of requirements for
the transformation techniques that will be applied whendfarming a source model
into a target model, this is referred as the Query/View/$farmation (QVT) approach.
The MOF version which is currently available is the 1.4 whichh theTroposand the
FT modeling languages meta-models are compliant to.

For what concerns QVT, on one side OMG is working on the spmeaditin of the
MOF 2.0 QVT requirements, and on the other side several tgaba for model trans-
formation have already been proposed. According to theifieation proposed in [11]
our approach to model transformation corresponds to a tBianipulation” approach
to model transformation. More specifically, we are exphajtVisitor patterns imple-
menting the structure of the models and the operations txéeuged on them, in or-
der to transform the informalroposmodel to the corresponding model in the target
specification language (i. €T for now). In parallel, we are considering Graph Trans-
formation techniques that have been already pointed oufpasraising technology to
provide mechanisms for the automatic synchronizationféédint views in a model or
for translating a model given in a specification language diffarent one. Along this
line we are integrating the visual modeler with the&system [13], which implements
graph rewriting techniques.

3 Supporting visual modeling and model validation in practce.

According to the framework briefly recalled in Section 2.2idg the software devel-
opment process the analyst performs activities such atibgia specification through
visual modeling 1); annotating th&roposvisual model with properties that can be rep-
resented irFT (2); querying the model3) in order to perform the assessment of the
model against possible inadequacies, incompletenessaoddistencies or to validate



the resulting specification with the domain experts or tlagedtolders; managing the
model refinement and evolution ste@$. (The process is sketched in Figure 5. Activity
(3) rests on validation through model-checking (see actistj 6).

Visual Model

(©)

Translation into
FT specification

Fig. 5. Visual modeling and model validation. A sketch of the practst we intend to support.
Some of the activities could be completely automated, godgrcother require a mixed-initiative
(analyst, tool) approach.

Actor Advisor

éoal OrchardsHistoricalData
Actor Advisor

_FT FullFillment Condition
specification
>

Exists LD: LabData(
(LD.actor=actor
and
Fullfilled(LD))

¥

Added constraint:

The goal "lab data" has to be
fulfilled before the goal "orchards historical data"

Fig. 6. Adding a temporal constraint to a specification.

Main requirements of a modeling environment which suppitsprocess are dis-
cussed in the following.

— Visual Modeling
The modeling environment should support the user duringpeeification of an
AO model in a graphical manner, e.g. according to Tr@posvisual notation as
shown in Figure 1. We adapted tlieposlanguage meta-model given in [7]. The



system should be able to represent the basic entities defitieéid meta-model like
actor, goal, plan, resource and the relationships betviean like the dependency,
the and-or decomposition, the means-end and the contiibithe modeler should
allow to represent new entities that could be included inTimosmeta-model
or in language variants, as well as to restrict the set ofesgtable entities to a
subset of the visual language, in an easy way. The meta-robthed visual model-
ing languages supported should be compliant to the MetacDbgilities (MOF)
directives that allow to specify, build and manage techgplweutral meta-models.

— Annotation via LTL logic formula
The modeling environment should support easy annotatitreofisual model with
invariants, creation or fulfillment conditions. In Figurassdescribed an example
in which the goals involved in an OR decomposition are camséd, via an LTL
formula (contained in the box) to be fulfilled in a given ordar particular the
goallab data has to be fulfilled before the goatchards historical data). This
constraint can not be represented in the visual model.

— Automatic Model Translation
The modeling environment should allow to save a model in rdsted format (e.qg.
XML or XMI), and automatically translate it into other tatggpecifications lan-
guages in order to exploit services like automatic verificatin this case every
entity in theTroposspecification is translated in the language required byrhe
model-checker (as shown the example in Figure 2). The mugl@nvironment
should be extensible and allow the integration of otherstodimodular design will
allow to add new components.

— Automatic Verification and Validation
The resulting formal specification should be queried by tied\sst in order to per-
form the assessment of the model against possible inadeguatompleteness
and inconsistencies or to validate the resulting specifinatith the domain ex-
perts or the stakeholders. The query should be translate@imassertion that the
model-checker will verify producing positive scenarioslér counterexamples.

— Results Representation and analysis
The output of the automatic verification activity (e.g. of timodel-checker) should
be represented in an effective way, in order to provide ther tlee information
he needs for model refinement. This represents an open Bsssible ways of
presenting an evolving scenario is the one depicted in Ei§uvhere a sequence
of creation and fulfillment for the goal is given, or in Figutewhere a counter-
example to a given assertion is given in the form of a barichar

4 The modeling environment

The modeling environment that we are developing for engldimodel-based software
development approach rests on a modular architecture vidisketched in Figure 7.

Its main component calledabwm (Tool for Agent-Oriented Modeling), is a tool which
supports the user while building Boposvisual model. The tool allows to annotate
each model entity with properties that can be formally repnéed. This core compo-
nent can be integrated with other components, such as thedi-T15], which is an
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Fig. 7. The modeling environment structure: the Agent-Oriente@)/odeling tool (RoM) is
connected to other tools, such as a model-checker for thficedion of formal properties of
the model (T-DoL) through the I12F module. Th&raph Transformation interfaceomponent
integrates a graph transformation techniques library.

automatic verification tool for thET modeling language based on the SIMV model
checker [10]. The 12F component provides an integratiomwben the visual modeler
and the model checker. It takes in input the description efiisual model specified
by TAom and queries from the analyst. The B®L produces in output a scenario
stating the truth of the query or a counterexample in the taseuery is false. The
Graph Transformation Interfacantegrates the modeler with a library implementing
graph rewriting techniques. Currently we are exploiting &G library and we have
represented correct model transformation3iioposas a set of &G rules [27]. This
will allow to get a continuous verification of the model refinent process. Moreover,
a complete trace of the process can be derived. A basic chaisdo work within an
open source environment.

In the rest of this section we give more details on the modeidron the 12F module,
then we briefly illustrate how to use the modeling environtnen

4.1 The Taom Component

The Agent-Oriented modeler componentis based on a frankaveaned Graph Editing
Framework (GEP), a library of Java classes for the visual representatiomaaiage-
ment of connected graphs which has been exploited for otbeefar such as ARGO-
UML2. The library implements the Model-View-Controller (MVCAern and assumes
that a model can be represented as a graph composed by selesf aset of ports that
can be associated to a node, and a set of edges, an edge sdwuepbrts of a given

type.

! http://gef.tigris.org/
2 http://argouml.tigris.org/
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Fig. 8. The UML package diagram ofADM.

The UML package diagram depicted in Figure 8 correspondstGEF implemen-
tation of the MVC pattern, namely:

— The packag8aserepresents the controller component for the system. Itidlac
tion of the basic classes for the application, such as ttss éta the editing function:
the classeSelection  andMode, that combines the selection and management
functionalities of the graphical objects and the classetheftypeCmd that con-
tains the functions for the editing management and for timérobof the interaction
with the user.

— The packag®resentatioimplements the GEF viewer component. It contains the
classes that define the basic graphical components of thefvark. They can be
grouped in two main categories, namely, the polygons andirtee that allow to
build new pictures.

— The packagésraph represents the model. It contains the definition of the basic
component of the graph model, in particular it defines thesga NetNode, Net-
Edge and NetPort respectively devoted to the representafithe graph nodes,
edges and ports that allow the connection via an edge to ter abdes in the
graph model.

The use of the MVC pattern results in a more flexible architextThe GEF pack-
ages have been extended to suppaposvisual modeling as shown in Figure 8.

In particular, the packageresentatiorhas been extended with the creation of the
packagePresenfTAOMto represent the visual part of the entities of Theposframe-
work; it contains classes like FigActor, FigGoal that udes dlass FigNode as a basis
for the Troposentity visual representation.

The packag&raphhas been extended with the pack&aph TAOMto represent
the entities of th@8roposmeta-model and of their properties; it contains the cladses
tor, Goal, and Dependency, that extend and use the classisdés NetPort and Net-
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Fig. 9. The UML class diagram for the Tropos Metamodel.

Edges. To allow for the definition of a model following the @t Management Group
(OMG), theTroposmetamodel has been defined via a UML class diagram (shown in
Figure 9) adopting the MOF (Meta Object Facilities) direes that allow to specify,
build and manage technology neutral meta-models. For thidemmplementation we
adopted the Java Metadata Interface, JMI, that enablesrtpkeientation of a dy-
namic, platform-independentinfrastructure to managetéation, storage, access, dis-
covery, and exchange of metadata. Finally, the persistitbe model has been assured
via the representation of the modelin XMI, the OMG standardérializing model and
meta-data in XML, that allow also the sharing of the modeissn the environment
components.

The packag®asehas been extended BaseTAOM to take care of the new func-
tionalities. If we need to extend the visual language withea relement we simply
follow these steps: the new element and the descriptionsafelationships with the
other elements is defined in the (MOF compliant) UML meta-giptihe entity is then
defined as a class of the packagmaph TAOM as an extension of classes of the pack-
ageGraph finally, elements for its graphical notation are definechi@eRresentTAOM
package and control functions related to the manipulatidhe@new entity can be de-
fined in the packagBase
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4.2 The I12F transformation module

The 12F module is one of the bridging modules that have begieimented in the
modeling environment. It allows to integratedwv with the T-TooL.

The architecture of the module is based on a “Direct-Marifoh” approach to the
model transformation; in particular we used a visitor to iempent the transformation
from the informalTroposmodel to th&=T one. A model developed withADMm is saved
as an XMl file containing the specification of the propertiethe entities of the model
and including the entity annotations which can be represdantLTL. The model’'s XMl
file is given in input to the transformation module which puods the corresponddrt
specification and gives it in input to the ToOL.

Figure 10 and Figure 11 show the UML design of the transfoionahodule which
exploits the visitor pattern [19], a well known design paitéhat allows to add new
operations without changing the classes of the elementshichvthey operates; this
characteristic is particularly useful in the design of agygmparsing environment, like
the one we describe here, since in general the elements nfjadge are more stable
respect to the operations executed on them. The visitowethon the class hierarchy in
Figure 10, allows to represent the element of Treposinformal model, likelTActor,
ITGoal, ITDecomposition, as a realization of the abstract cld¥®Node. The visit-
ing methods such assitITActor, visitITGoal, visiti TDecomposition, specified in the
visitor classTransformIT2FT, shown in Figure 11(b), allow to transform tAeopos
entities to theFT entities specified by the realization of the abstract ckaESode in
Figure 11(a). Notice that the visit methods operates thestaion according to the
mapping between informdroposandFT concepts. Figure 2 gives an example of this
mapping for the goal dependency concept. It contains skwerdlition for the cre-
ation and fulfillment of the goal specified via first order Lam&@emporal Logic (LTL)
formulas.

If we need to transform aroposmodel (the source model) into a different target
specification language, once having defined a mapping battteeconcepts of the
source and the target specification language, we can desigw @lass hierarchy de-
scribing the target model entities (such as those intradlf@eFT) and a new visitor



FTNode Visitor
-nodeName: Strini
-nodelndex: int o :V.is.ittl?rrgt 0
visitI TActor
:FTNO?QO +visitITElement()
+HCICSP 0 +visitITDependency()
+SetNameo +visitITDecomposition()
QEI gme() +visitITContribution()
:SEIIndex() +visitITMeansEnd()
getindex() +visitFTActor()
+visitFTDependency()
+VisitFTEntity()
FTActor FTDependency FTEntity
TFTAGT) +Depender: String TE0 TransformIT2FT WriteFT
+Dependee: Strin +FTEN
+accept() +FTgepen dency()g +accept() +TransformIT2FT() +WriteFT()
+accept() +visitITActor() +visitI TActor()
+visitITElement() +visitITElement()
+visiti TDependency() +visitlTDependency()
+visitITDecomposition() +visitlITDecomposition()
+visitI TContribution() +visitI TContribution()
+visitiTMeansEnd() +visitITMeansEnd()
+visitFTActor() +visitFTActor()
+visitFTDependency() +visitFTDependency()
+VisitFTEntity() +VisitFTEntity()
(@) (b)

Fig. 11. The set of FT Nodes that maps the Tropos entities (a) and th# gisitor classes that
implement the I12F transformation (b).

class hierarchy where the transformation operations ketwerresponding entities are
defined.

4.3 How to use it

Figure 12 depicts the graphic user interface @bii. The screen is divided in four main
areas: th&roposdiagram palette on the top, the diagram editor, the messagtow
at the bottom and the properties editor at the right.

TAaoMm allows the analyst to define a neélvoposdiagram by selecting from the
palette the desirefiroposentity and drawing it in the diagram editor. For every model
refinement operation, the@G graph rewriting system verifies its correctness against
the specified rewriting rules, and send information aboetvlidity of the operation
which will be displayed in the message window. For eveigposentity it is possible
to specify properties that can be represented formally ¢oaditions for goal exis-
tence and fulfillment) using the property editor; these prtips can be translated into
FT specifications by selecting the corresponding commandeirithols” menu of the
TaoM Palette. The resultingT specification is automatically passed to the @OL
for model verification.

The system allows to save and load the models in XMI formatraaodel views in
PGML, a format that maintains the graphical informationlo@ $pecified model view.

After the creation of a visual model via the TAOM editor, theeucan specify the
temporal constraints that can be added via LTL formulas. Mbdel can be saved in
XMI format; the file contains both the informal model defioitiand the added for-
mal annotations. The XMI specification can be translateth&HT language that can
be queried and formally verified by the TeDL in order, for example, to produce a
scenario.
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Fig. 12. The GUI of Taom: on top of the application window thEroposdiagram palette, in the
center the diagram editor, at the bottom the message winddhe properties editor at the right.

5 Related work

The approach to model validation considered in the papéerdifrom approaches
which exploit simulation (or execution) of a specificatiavhich is usually performed
in a late phase of the development process, i. e. beforemsydtployment and execu-
tion. In these approaches, possible inconsistenciestddtapon simulation need to be
traced back from detailed design to requirements modetsinBtance [18] proposes a
development process for Multi-Agent System which integgahodeling and simula-
tion. It exploits a Java-based discrete events simuldterdetailed design specification
of a Multi-Agent System is translated into code which is giwe input to the simu-
lator and it is checked with respect to correctness and effitgi. In our case, model
validation activities can interleave model refinementuiotis during all the software
development phases.

Relevant to the work described in the paper are the spedificand technolog-
ical solutions which are going to be provided by the MDA iatitve of OMG [23,
8]. In particular we refer to the ongoing work on the spectfaa of the MOF 2.0
Query/Views/Transformations (QVT) [23, 20] whose goalhiattof providing a stan-
dard for expressing model transformations. Up to our kndg#e techniques and tech-
nologies that support the rigorous definition and applicatf model transformations,
according to the MDA vision, are still under developmént

3 See http:/iwww.omg.org/techprocess/meetings/sch#d@e_2.0.Query View_Transf_RFP.html
for request for proposal on MOF 2.0 QVT



In this context, graph grammars and graph rewriting [5] sézffer a promising
technology to support automatic transformations in a wayskemantic interoperability
is maintained [24]. Several tools have been developed lihatrate the practical ap-
plicability of the graph rewriting approach. These envir@nts have demonstrated that
complex transformations can be expressed in the form ofitiegirules. In a parallel
work we are studying the applicability of graph rewritingh@iques to support visual
modeling inTropos[27].

Works on CASE tools for visual modeling are worth to be memi. These tools
are largely diffused nowadays, but most of them are not cetalyl open-source nor
provide easily extensible projects. As already mentionedreferred mainly to the
ARGO-UML project, a graphical software design environnteat aims at support the
design, development and documentation of object-oriesddisvare applications, that
uses the GEF library, described in Section 4, as one of itpooments.

In the following we will describe a tool which allows to cusiize a modeler re-
spect to a specific notation and a couple of tools which suppethodologies for goal-
analysis, from which we got interesting ideas.

The Domain Modeling Environment (DOME) [22] is a tool-setiathincludes
model-editing, meta-modeling, and analysis tools. It hasnbdesigned to support a
model-based development approach to software engine®&{DNIE already supports
different notation, such as various OO modeling languagéditional domain-specific
notations, based on visual grammars can be easily inclUd®ME was written in
the VisualWorks Smalltalk. The latest release of DOME (5.3) dates to 2000, and no
specific news on future development are available from tiee si

Among the tools that support goal analysis techniques wi stemtion OME3°
which supports goal-oriented modeling and analysis with&i* framework. It pro-
vides users with a graphical interface to develop modelsEQI implemented in Java
1.2 and rests upon a knowledge base which is written in T&6F b terminological
language.

Objectiver [3] is a commercial product that supports the Kawethod [12], its
graphical notations and the analysis process, which irslughthering of the infor-
mation to be used as a guide for the goals to be achieved, mgddtawing up of a
report.

Finally, we shall mention thECLIPSEProject [2], an open source initiative that al-
low the integration of different tools into a single “ap@t®on”. New tools are integrated
into the platform and user interface trough plug-ins tha¢edECLIPSEfacilities, pro-
viding new functionalities. Interesting characteristi¢tee platform is the extensibility,
the plug-in model simplify the extension of a tool build ugbe platform, the platform
makes available a workspace into which the tool can be irgtghe workspace can be
shared between the application, moreover the platform hagminterface that can be
customized with respect to the user needs. We are curremibidering the portability
of our tools within theECLIPSEplatform.

4 Cincom International offers free noncommercial versiohgisualWorks for Linux and Win-
dows
5 http://www.cs.toronto.edu/km/ome/



6 Conclusion and Future Work

This paper described an AO environment which includes aaliswdeling tool that
supports model building ifroposand integrates other tools, such as the 3oL, a
model-checker for the verification of formal properties &elG, a library which im-
plements graph transformation techniques that can be aseghport model refinement.
We described in details the modeling environment architesthe visual modeler and
the 12F component.

Basic motivations behind this work, such as that of favothmgpractical usage of
AO methodologies and of supporting the model-based apprtmasoftware develop-
ment proposed iffroposhas also been discussed.

The described environment implements a core subset of uéreznents that have
been identified [6]. Work is in progress to port the systenthinitheECLIPSEplatform
and to implement other requirements referring to the mamageé of other software
development artifacts, multiple views on the model and ®gbpport of the process
phases proposed by tA@oposmethodology. Moreover, we are following the MDA
initiative by OMG which is providing standards relevant Bpressing model trans-
formations (MOF 2.0 Query/Views/Transformations), andmaey revise some of the
design choices described in the paper in order to be contpliimthe emerging stan-
dards. Graph transformation techniques have been alre@died out as a promising
technology to provide mechanisms for the automatic symihadion of different views
in a model or for translating a model given in a specificatiamguage to a different
one. Along this line we are pursuing a parallel research§@d]extend the work on the
integration of the &G system in the environment.
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