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Abstract. Agent-Oriented methodologies that have been recently proposed for
engineering distributed systems tend to adopt a model-based approach to software
development, that is they devise a development process based on the definition
of a specific set of models for each steps in the analysis and the software design
phases.
To be put into practice, this approach demands clear guidelines for building and
refining models along the software development process, as well as flexible mod-
eling tools which integrates automatic verification techniques at support of model
validation.
In this paper we describe a modeling environment which integrates an Agent-
Oriented (AO) modeling tool with other tools, such as a model-checker for the
verification of formal properties of the model and a library which implements
graph transformation techniques which can be used to support model refinement
as well as model transformations. In designing it we took into account recom-
mendations from the OMG’s Model-Driven Architecture initiative.
We illustrate the modeling environment architecture, givedetails on the AO mod-
eling tool and on the components that allows for the integration with other tools.
Examples of how modeling and validation can be interleaved and supported by
the modeling environment are given.

1 Introduction

Conceptual modeling in software system engineering is considered a best practice
which favors the communication among the stakeholders involved in the development
process and supports project documentation. In Object Oriented approaches this prac-
tice has become popular thanks to the diffusion of CASE toolssuch as UML modelers
which provide an effective support for the definition of a conceptual model via building
diagrammatic representations (views) of the model itself.Nevertheless, UML model-
ing is still affected by limits such as subjectivity and difficulty in exploiting automatic
verification techniques for model validation.

Conceptual modeling assumes an even more critical role in model-based develop-
ment approaches to software engineering. In model-based development, a model serves
as the primary representation of a system under development. It should be able to cap-
ture different properties of the system and of its environment, such as domain features
and customer expectations and it has to be refined and transformed to a model of the
architecture and detail design of the system-to-be, and finally to code. The model-based



approach demands tools that support model specification providing adequate expres-
sive power, for instance allowing the integration of specification languages which are
suitable to represent dynamic properties with languages which are appropriate to model
structural properties, as well as tools that provide transformation mechanisms to execute
the translation steps in a transparent and simple manner.

Current Agent-Oriented (AO) methodologies for engineering distributed systems
tend to adopt a model-based development approach. They all define a set of models
(or views on a model) corresponding to specific steps in the analysis and design of
software. For instance, GAIA [31] considers a four stages process which starts upon
the collection of requirements, with an analysis step, followed by architectural design,
detailed design and implementation. For both the analysis and design steps, specific
models are to be defined. Differently from the process proposed in GAIA, theTropos
methodology prescribes a preliminary stage, called early requirements, followed by late
requirements, architectural design, detailed design and implementation steps [7]. GAIA
does not commit to a specific modeling language whileTroposbuilds its own notation
upon thei* framework [30]. Other AO methodologies propose their own modeling lan-
guage defining appropriate UML stereotypes, for instance PASSI (Process for Agent
Societies Specification and Implementation) [4] and MESSAGE [9]. More recently, the
AUML [1] effort which aims at extending UML with additional abstraction and nota-
tion has been strengthened inside the FIPA initiative. The lack of effective CASE tools
is still limiting the experimentation of these methodologies in industrial settings and,
more generally, makes difficult their diffusion.

In this paper, we describe an environment for supporting a model driven software
development approach adopting an Agent Oriented methodology. Its architecture al-
lows for a flexible integration of different tools. The current version includes a mod-
eler that supports the analyst when building an informal specification using theTropos
methodology and a component that allows for its automatic transformation into a for-
mal specification which can be verified by a model-checker. The modeling environment
supports the adoption of a framework, that has been previously proposed [29], which
rests on a light integration of informal and formal languages. Moreover, the platform
includes the interface to a graph rewriting library, i. e. the Attributed Graph Grammar
(AGG) system [13] that will be used to support model refinement [27]. In designing it
we are taking into account basic directives, such as meta-modeling standards, coming
from the Model-Driven Architecture (MDA) initiative of theOMG.

The paper is structured as follows. Section 2 discusses basic motivations of this
work and provides examples of how visual modeling and model verification are ex-
ploited in our approach. Relationships with the Model-Driven Architecture (MDA) ini-
tiative of the OMG, which is proposing a model-based approach to software engineer-
ing [8] and it is going to guide the development in this area byproviding technological
infrastructures and standards [20], are also pointed out. Section 3, presents a practi-
cal approach to interleaving visual modeling a model validation via model-checking
techniques and the main requirements of a tool that aims at supporting this approach;
section 4, describes the modeling environment architecture and how to use it. Related
works are discussed in Section 5. Finally, conclusion and future work are presented in
Section 6.



2 Background

2.1 TheTropos methodology

The Troposmethodology [7, 28] is an agent-oriented software development method-
ology which provides a visual modeling language that can be used to define both an
informal specification and a formal one. From a practical point of view, the method-
ology guides the software engineer in building an informal,conceptual model that is
incrementally refined and extended from an early requirements model, namely a rep-
resentation of the organizational setting where the system-to-be will be introduced, to
system design artifacts, according to a requirements-driven approach.

TheTroposlanguage allows to model intentional and social concepts, such as those
of actor and goal, and set of relationships, such as actor dependency, goal decomposi-
tion, means-end and contribution relationships. These elements support the modeling
of basic goal analysis techniques. Anactormodels an entity that has strategic goals and
intentionality, such as a physical agent, a role with respect to a given context, or a set of
roles (i.e., a position).Goalsrepresent the strategic interests of actors. Two basic type
of goals are considered, namely hard and soft goals, the latter having no clear-cut defi-
nition and/or criteria as to whether they are satisfied. Softgoals are useful for modeling
goal/plan qualities and non functional requirements. Adependencybetween two actors
indicates that an actor depends on another in order to achieve a goal, execute a plan, or
exploit a resource.

Basic modeling activities inTroposinclude the identification of the actors with their
goals and of the actors mutual dependencies. Each goal can beanalyzed from the point
of view of the individual actor considering: possible sub-goals (AND decomposition);
means to satisfy these goals (means-end relationship); alternative ways to achieve a spe-
cific goal (OR decomposition); goals or plans or resources that can contribute positively
or negatively to its achievement (contribution). All these models can be depicted using
two basic types of diagrams, namely, actor and goal diagrams(an example is given in
Figure 1). A detailed account of modeling activities can be found in [7].

An informal specification inTroposprovides a “static” view of the organizational
setting and of the dependencies among the different elements of the domain. A Formal
Tropos(FT hereafter on) specification [14, 16] extends a specificationwith annotations
that characterize the valid behaviors of the model. InFT the emphasis goes in modeling
the “strategic” aspects of the evolutions of the model. Thus, anFT specification consists
of a sequence of entity declarations such as, actors, goals,and dependencies which con-
tain temporal constraints expressed in Linear Temporal Logic (LTL hereafter on). These
constraints describe the valid lifetime evolutions of the model in terms of temporal evo-
lutions of set of instances of the model’s entities. For instance, two critical moments in
the life-cycle of goals and dependencies are the instants oftheircreationandfulfillment.
The creation of a goal is interpreted as the moment in which the owner or depender ex-
pects or desires to achieve the goal, while its fulfillment isthe time in which the goal
condition is actually achieved. InFT, creation and fulfillment constraints can be used
to define conditions for these two moments in the life of intentional elements. Creation
and fulfillment conditions cab be used, for defining constraints on the lifetimes of sub-
goals in a goal decomposition (sub-goals are created after the parent goal and should be



fulfilled before the parent goal can be fulfilled), or for defining the responsiveness of an
actor with respect to the dependencies (an actor can take care immediately of some of
them while delaying other dependencies).

FT also providesinvariant constraints that define conditions that should be true
throughout the lifetime of model instances. Typically, invariants define relations on the
possible values of attributes, or cardinality constraintson the instances of a given entity.

2.2 Interleaving visual modeling and model validation
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Fig. 1. A Troposgoal diagram built by the analyst.

. . .

Goal Dependency OrchardsData
Depender Advisor
Dependee Producer
Mode achieve
Creation condition
∃ ohd : OrchardHistoricalData ((ohd.actor = depender) ∧¬ Fulfilled(ohd))

Invariant
∃ ohd : OrchardHistoricalData (ohd.actor = depender)

Fig. 2. FT specification of the goal dependencyorchards data, shown in theTroposdiagram in
Figure 1, between theAdvisor and theProducer.

In [29] we proposed a framework which rests on the interleaving of informal mod-
eling with automatic model validation.
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Fig. 3. Frame sequence depicting a trace produced by the model-checker while verifying the
satisfiability of goal labeled (A) in Figure 1.

In practice, we consider the possibility to formally annotate the entities, which are
diagrammatically depicted in a visual model, and to check the resulting specification via
model-checking techniques, in order to discover new constraints in the domain that are
able to guide the refinement of the model and to produce scenarios that can be analyzed
by a stakeholder for their validation. This process can leadto a combinatorial explosion
when dealing with formal representations of a whole model. To control this complexity
component we proposed two strategies: from one side the use of LTL logics and of
symbolic model checking; from the other the set up of a check procedure that can be
carried on only for subsets of the model (e.g. goal dependencies hierarchies).

In Figure 1, is described aTroposdiagram that can be enriched withFT properties
via annotations. In particular, it represents a goal decomposition of the (A)-labeled goal;
this goal can be fulfilled if at least one of the goals of the decomposition is fulfilled (OR-
Goal decomposition). This static model can be annotated as depicted in Figure 2 that
shows how the LTL clauses are integrated in an entity declaration for describing, for in-
stance, the valid creation and invariant conditions for a dependency. This representation
can be checked in order to verify its properties, such as the satisfiability of the goal (A),
by querying the underlying formal representation using model-checking techniques. In
this case, the result of the query can be visualized as a sequence of frames, showed
in Figure 3 that describes the fulfillment of the goal (A). Each frame corresponds to a
step of the trace produced by the model-checker, where goal instances are created and
fullfilled (in gray color) respectively.

Another type of property that can be checked is considered inthe following exam-
ple; it focuses on the possibility that more than one activity can be carried on together.
It basically correspond to the following question: is the model able to capture possi-
ble mistakes in the ordering of goal fulfillment? Considering the example depicted in
Figure 1, the property to be checked can be informally statedas follow:

In the case more than onelab data activities can be performed before amon-
itoring device data, is it always the case that all instances oflab data relative



to the same orchard have to be fulfilled before fulfilling themonitoring device
data for the orchard?

This query can be formulated as follows: are all the instances of lab data fulfilled before
all the instances ofmonitoring device data? which can be rewritten as the following
LTL formula:

Global Assertion F (
∀ a : Advisor (∀ hda : HistoricalDataAnalysis (hda.actor = a→

∀ mdd : MonitoringDeviceData (mdd.hda = hda→
Justfulfilled(hda) → ∀ ld : LabData (ld.hda = hda→ Fulfilled(ld))))))

In this case, T-TOOL generates a counter-example scenario, illustrated by the bar-charts
diagrams depicted in Figure 4 where the bars represent the life-cycle of four instances of
goals specified in the visual model:historical data analysis, lab data [A], lab data [B]
andmonitoring device data. Every single instance of goal can go from a “not created”
status, the dashed area of the bar, to a “created” status, thelight gray area of the bar to
a “fulfilled” status, the dark gray area of the bar. The scenario shows that it is possible
to fulfill the second instance oflab data (LD[B] in the diagram) after themonitoring
device data(MDD) has already been fulfilled. Indeed, annotations have to be added

LD[A] LD[B]MDD

Monitoring 
Device Data

Lab Data [A]

Lab Data [B]

Historical 
Data Analysis

Fig. 4. Another validation scenario for the goallab data with two instances.

to theFT model in order to implement the constraints on the temporal orders that are
agreed with the stakeholder, refining the existing visual model. On the other hand, the
understanding of these constraints is very important for a deep understanding of the
whole application domain, and their elicitation is very difficult in a purely informal
framework.

The validation, analysis and refinement, is a recurrent process that is undertaken
during the different phases of software development (i.e. early requirement, late re-
quirement, architectural design inTropos).

2.3 Current trends in developing CASE tools

In developing tools for supporting the described process weare taking into account
emerging guidelines and standards from the OMG’ Model-Driven Architecture (MDA)
initiative which proposes an approach to software development based on modeling and



automated mapping of models to code. A basic motivation of MDA is that of improv-
ing quality, by allowing for the reuse of models and mappingsbetween models, and
software maintainability by favoring a better consistencybetween models and code.
One of the basic concepts in MDA is that of distinguishing between a software design
which is platform independent (Platform-Independent Models, PIM) from a software
design that includes all the platform specific details (Platform-Specific Models, PSM).
The two models can be related through a transformation process which converts a PIM
to its semantically equivalent PSM. A PIM model can be the result of a chain of trans-
formations between different abstraction level PIMs, which may include, as in our case,
interleaving of formal and informal specification languages. Even if the MDA initiative
refers mainly to Object Oriented software development and to system design activities,
we think that the emerging ideas are of interest to Agent Oriented software engineering
as well [17].

In MDA, the use of various modeling concepts and notations isforeseen with the
idea to favor the exploitation of existing specification languages that are more appro-
priate to define views on dynamic aspects rather than of structural aspects of a given
model.

From a practical point of view, the MDA initiative is proposing a standard to which
the meta-models of the specification languages used in the modeling process must be
compliant with, that is the Meta Object Facility (MOF), and aset of requirements for
the transformation techniques that will be applied when transforming a source model
into a target model, this is referred as the Query/View/Transformation (QVT) approach.
The MOF version which is currently available is the 1.4 whichboth theTroposand the
FT modeling languages meta-models are compliant to.

For what concerns QVT, on one side OMG is working on the specification of the
MOF 2.0 QVT requirements, and on the other side several techniques for model trans-
formation have already been proposed. According to the classification proposed in [11]
our approach to model transformation corresponds to a “Direct-Manipulation” approach
to model transformation. More specifically, we are exploiting Visitor patterns imple-
menting the structure of the models and the operations to be executed on them, in or-
der to transform the informalTroposmodel to the corresponding model in the target
specification language (i. e.FT for now). In parallel, we are considering Graph Trans-
formation techniques that have been already pointed out as apromising technology to
provide mechanisms for the automatic synchronization of different views in a model or
for translating a model given in a specification language to adifferent one. Along this
line we are integrating the visual modeler with the AGG system [13], which implements
graph rewriting techniques.

3 Supporting visual modeling and model validation in practice.

According to the framework briefly recalled in Section 2.2 during the software devel-
opment process the analyst performs activities such as: building a specification through
visual modeling (1); annotating theTroposvisual model with properties that can be rep-
resented inFT (2); querying the model (3) in order to perform the assessment of the
model against possible inadequacies, incompleteness and inconsistencies or to validate



the resulting specification with the domain experts or the stakeholders; managing the
model refinement and evolution steps (4). The process is sketched in Figure 5. Activity
(3) rests on validation through model-checking (see activities5, 6).

Visual Model

Translation into
FT specification

Result analysis
and Model refinement

Query Model

Model Checking

annotation

(1)

(4)

(2)

(3)

(5)

(6)

Fig. 5. Visual modeling and model validation. A sketch of the process that we intend to support.
Some of the activities could be completely automated, gray color, other require a mixed-initiative
(analyst, tool) approach.

Advisor
manage

pheromone trap
plant

lab
data

(A)

Actor Advisor
...
Goal OrchardsHistoricalData
    Actor Advisor
    ...
    FullFillment Condition
       ...

       Exists LD: LabData(
                            (LD.actor=actor 
                             and 
                             Fullfilled(LD)) 

Added constraint:

The goal "lab data" has to be 
fulfilled before the goal "orchards historical data"  

FT
specification

historical data
analysis

orchards 
historical

data

Fig. 6. Adding a temporal constraint to a specification.

Main requirements of a modeling environment which supportsthis process are dis-
cussed in the following.

– Visual Modeling
The modeling environment should support the user during thespecification of an
AO model in a graphical manner, e.g. according to theTroposvisual notation as
shown in Figure 1. We adapted theTroposlanguage meta-model given in [7]. The



system should be able to represent the basic entities definedin this meta-model like
actor, goal, plan, resource and the relationships between them like the dependency,
the and-or decomposition, the means-end and the contribution. The modeler should
allow to represent new entities that could be included in theTroposmeta-model
or in language variants, as well as to restrict the set of representable entities to a
subset of the visual language, in an easy way. The meta-modelof the visual model-
ing languages supported should be compliant to the Meta Object Facilities (MOF)
directives that allow to specify, build and manage technology neutral meta-models.

– Annotation via LTL logic formula
The modeling environment should support easy annotation ofthe visual model with
invariants, creation or fulfillment conditions. In Figure 6is described an example
in which the goals involved in an OR decomposition are constrained, via an LTL
formula (contained in the box) to be fulfilled in a given order(in particular the
goal lab data has to be fulfilled before the goalorchards historical data). This
constraint can not be represented in the visual model.

– Automatic Model Translation
The modeling environment should allow to save a model in a standard format (e.g.
XML or XMI), and automatically translate it into other target specifications lan-
guages in order to exploit services like automatic verification. In this case every
entity in theTroposspecification is translated in the language required by theFT
model-checker (as shown the example in Figure 2). The modeling environment
should be extensible and allow the integration of other tools. A modular design will
allow to add new components.

– Automatic Verification and Validation
The resulting formal specification should be queried by the analyst in order to per-
form the assessment of the model against possible inadequacies, incompleteness
and inconsistencies or to validate the resulting specification with the domain ex-
perts or the stakeholders. The query should be translated into an assertion that the
model-checker will verify producing positive scenarios and/or counterexamples.

– Results Representation and analysis
The output of the automatic verification activity (e.g. of the model-checker) should
be represented in an effective way, in order to provide the user the information
he needs for model refinement. This represents an open issue.Possible ways of
presenting an evolving scenario is the one depicted in Figure 3 where a sequence
of creation and fulfillment for the goal is given, or in Figure4, where a counter-
example to a given assertion is given in the form of a bar-chart.

4 The modeling environment

The modeling environment that we are developing for enabling a model-based software
development approach rests on a modular architecture whichis sketched in Figure 7.
Its main component called TAOM (Tool for Agent-Oriented Modeling), is a tool which
supports the user while building aTroposvisual model. The tool allows to annotate
each model entity with properties that can be formally represented. This core compo-
nent can be integrated with other components, such as the T-TOOL [15], which is an



Fig. 7. The modeling environment structure: the Agent-Oriented (AO) modeling tool (TAOM) is
connected to other tools, such as a model-checker for the verification of formal properties of
the model (T-TOOL) through the I2F module. TheGraph Transformation interfacecomponent
integrates a graph transformation techniques library.

automatic verification tool for theFT modeling language based on the NUSMV model
checker [10]. The I2F component provides an integration between the visual modeler
and the model checker. It takes in input the description of the visual model specified
by TAOM and queries from the analyst. The T-TOOL produces in output a scenario
stating the truth of the query or a counterexample in the casethe query is false. The
Graph Transformation Interfaceintegrates the modeler with a library implementing
graph rewriting techniques. Currently we are exploiting the AGG library and we have
represented correct model transformations inTroposas a set of AGG rules [27]. This
will allow to get a continuous verification of the model refinement process. Moreover,
a complete trace of the process can be derived. A basic choicewas to work within an
open source environment.

In the rest of this section we give more details on the modelerand on the I2F module,
then we briefly illustrate how to use the modeling environment.

4.1 The TAOM Component

The Agent-Oriented modeler component is based on a framework named Graph Editing
Framework (GEF)1, a library of Java classes for the visual representation andmanage-
ment of connected graphs which has been exploited for other modeler such as ARGO-
UML2. The library implements the Model-View-Controller (MVC) pattern and assumes
that a model can be represented as a graph composed by set of nodes, a set of ports that
can be associated to a node, and a set of edges, an edge connects two ports of a given
type.

1 http://gef.tigris.org/
2 http://argouml.tigris.org/



GRAPH

MODEL

BASE

CONTROLLER

PRESENTATION

VIEWER

GRAPH_TAOM

BASE_TAOM

PRESENT_TAOM

<<extend>>

<<extend>>

<<extend>>

Editor
Selection

NetPort

ArrowHead

Fig

Cmd
Mode

NetNode

NetEdge

FigActor
FigGoal

FigDependency

Actor
Goal

Dependency

CmdActorCreation

Fig. 8. The UML package diagram of TAOM.

The UML package diagram depicted in Figure 8 corresponds to the GEF implemen-
tation of the MVC pattern, namely:

– The packageBaserepresents the controller component for the system. It is a collec-
tion of the basic classes for the application, such as the class for the editing function:
the classesSelection andMode, that combines the selection and management
functionalities of the graphical objects and the classes ofthe typeCmd, that con-
tains the functions for the editing management and for the control of the interaction
with the user.

– The packagePresentationimplements the GEF viewer component. It contains the
classes that define the basic graphical components of the framework. They can be
grouped in two main categories, namely, the polygons and thelines that allow to
build new pictures.

– The packageGraph represents the model. It contains the definition of the basic
component of the graph model, in particular it defines the classes NetNode, Net-
Edge and NetPort respectively devoted to the representation of the graph nodes,
edges and ports that allow the connection via an edge to the other nodes in the
graph model.

The use of the MVC pattern results in a more flexible architecture. The GEF pack-
ages have been extended to supportTroposvisual modeling as shown in Figure 8.

In particular, the packagePresentationhas been extended with the creation of the
packagePresentTAOM to represent the visual part of the entities of theTroposframe-
work; it contains classes like FigActor, FigGoal that uses the class FigNode as a basis
for theTroposentity visual representation.

The packageGraphhas been extended with the packageGraph TAOM to represent
the entities of theTroposmeta-model and of their properties; it contains the classesAc-
tor, Goal, and Dependency, that extend and use the classes NetNode, NetPort and Net-



Fig. 9.The UML class diagram for the Tropos Metamodel.

Edges. To allow for the definition of a model following the Object Management Group
(OMG), theTroposmetamodel has been defined via a UML class diagram (shown in
Figure 9) adopting the MOF (Meta Object Facilities) directives that allow to specify,
build and manage technology neutral meta-models. For the model implementation we
adopted the Java Metadata Interface, JMI, that enables the implementation of a dy-
namic, platform-independent infrastructure to manage thecreation, storage, access, dis-
covery, and exchange of metadata. Finally, the persistenceof the model has been assured
via the representation of the model in XMI, the OMG standard for serializing model and
meta-data in XML, that allow also the sharing of the model between the environment
components.

The packageBasehas been extended inBaseTAOM to take care of the new func-
tionalities. If we need to extend the visual language with a new element we simply
follow these steps: the new element and the description of its relationships with the
other elements is defined in the (MOF compliant) UML meta-model; the entity is then
defined as a class of the packageGraph TAOM as an extension of classes of the pack-
ageGraph; finally, elements for its graphical notation are defined in thePresentTAOM
package and control functions related to the manipulation of the new entity can be de-
fined in the packageBase.
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Fig. 10.The set of Informal Tropos Nodes.

4.2 The I2F transformation module

The I2F module is one of the bridging modules that have been implemented in the
modeling environment. It allows to integrate TAOM with the T-TOOL.

The architecture of the module is based on a “Direct-Manipulation” approach to the
model transformation; in particular we used a visitor to implement the transformation
from the informalTroposmodel to theFT one. A model developed with TAOM is saved
as an XMI file containing the specification of the properties of the entities of the model
and including the entity annotations which can be represented in LTL. The model’s XMI
file is given in input to the transformation module which produces the correspondentFT
specification and gives it in input to the T-TOOL.

Figure 10 and Figure 11 show the UML design of the transformation module which
exploits the visitor pattern [19], a well known design pattern that allows to add new
operations without changing the classes of the elements on which they operates; this
characteristic is particularly useful in the design of a generic parsing environment, like
the one we describe here, since in general the elements of a language are more stable
respect to the operations executed on them. The visitor, showed in the class hierarchy in
Figure 10, allows to represent the element of theTroposinformal model, likeITActor,
ITGoal, ITDecomposition, as a realization of the abstract classITNode. The visit-
ing methods such asvisitITActor, visitITGoal, visitITDecomposition, specified in the
visitor classTransformIT2FT, shown in Figure 11(b), allow to transform theTropos
entities to theFT entities specified by the realization of the abstract classFTNode in
Figure 11(a). Notice that the visit methods operates the translation according to the
mapping between informalTroposandFT concepts. Figure 2 gives an example of this
mapping for the goal dependency concept. It contains several condition for the cre-
ation and fulfillment of the goal specified via first order Linear Temporal Logic (LTL)
formulas.

If we need to transform aTroposmodel (the source model) into a different target
specification language, once having defined a mapping between the concepts of the
source and the target specification language, we can design anew class hierarchy de-
scribing the target model entities (such as those introduced for FT) and a new visitor
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Fig. 11.The set of FT Nodes that maps the Tropos entities (a) and the set of visitor classes that
implement the I2F transformation (b).

class hierarchy where the transformation operations between corresponding entities are
defined.

4.3 How to use it

Figure 12 depicts the graphic user interface of TAOM. The screen is divided in four main
areas: theTroposdiagram palette on the top, the diagram editor, the message window
at the bottom and the properties editor at the right.

TAOM allows the analyst to define a newTroposdiagram by selecting from the
palette the desiredTroposentity and drawing it in the diagram editor. For every model
refinement operation, the AGG graph rewriting system verifies its correctness against
the specified rewriting rules, and send information about the validity of the operation
which will be displayed in the message window. For everyTroposentity it is possible
to specify properties that can be represented formally (i.e. conditions for goal exis-
tence and fulfillment) using the property editor; these properties can be translated into
FT specifications by selecting the corresponding command in the “Tools” menu of the
TAOM Palette. The resultingFT specification is automatically passed to the T-TOOL

for model verification.
The system allows to save and load the models in XMI format andmodel views in

PGML, a format that maintains the graphical information on the specified model view.
After the creation of a visual model via the TAOM editor, the user can specify the

temporal constraints that can be added via LTL formulas. Themodel can be saved in
XMI format; the file contains both the informal model definition and the added for-
mal annotations. The XMI specification can be translated in theFT language that can
be queried and formally verified by the T-TOOL in order, for example, to produce a
scenario.



DIAGRAM EDITOR

MESSAGE WINDOW

FORMAL 
PROPERTIES EDITOR

PALETTE

Fig. 12.The GUI of TAOM: on top of the application window theTroposdiagram palette, in the
center the diagram editor, at the bottom the message window and the properties editor at the right.

5 Related work

The approach to model validation considered in the paper differs from approaches
which exploit simulation (or execution) of a specification,which is usually performed
in a late phase of the development process, i. e. before system deployment and execu-
tion. In these approaches, possible inconsistencies detected upon simulation need to be
traced back from detailed design to requirements models. For instance [18] proposes a
development process for Multi-Agent System which integrates modeling and simula-
tion. It exploits a Java-based discrete events simulator: the detailed design specification
of a Multi-Agent System is translated into code which is given in input to the simu-
lator and it is checked with respect to correctness and efficiency. In our case, model
validation activities can interleave model refinement activities during all the software
development phases.

Relevant to the work described in the paper are the specification and technolog-
ical solutions which are going to be provided by the MDA initiative of OMG [23,
8]. In particular we refer to the ongoing work on the specification of the MOF 2.0
Query/Views/Transformations (QVT) [23, 20] whose goal is that of providing a stan-
dard for expressing model transformations. Up to our knowledge, techniques and tech-
nologies that support the rigorous definition and application of model transformations,
according to the MDA vision, are still under development3.

3 See http://www.omg.org/techprocess/meetings/schedule/MOF 2.0 Query View Transf.RFP.html
for request for proposal on MOF 2.0 QVT



In this context, graph grammars and graph rewriting [5] seemto offer a promising
technology to support automatic transformations in a way that semantic interoperability
is maintained [24]. Several tools have been developed that illustrate the practical ap-
plicability of the graph rewriting approach. These environments have demonstrated that
complex transformations can be expressed in the form of rewriting rules. In a parallel
work we are studying the applicability of graph rewriting techniques to support visual
modeling inTropos[27].

Works on CASE tools for visual modeling are worth to be mentioned. These tools
are largely diffused nowadays, but most of them are not completely open-source nor
provide easily extensible projects. As already mentioned we referred mainly to the
ARGO-UML project, a graphical software design environmentthat aims at support the
design, development and documentation of object-orientedsoftware applications, that
uses the GEF library, described in Section 4, as one of its components.

In the following we will describe a tool which allows to customize a modeler re-
spect to a specific notation and a couple of tools which support methodologies for goal-
analysis, from which we got interesting ideas.

The Domain Modeling Environment (DOME) [22] is a tool-set which includes
model-editing, meta-modeling, and analysis tools. It has been designed to support a
model-based development approach to software engineering. DOME already supports
different notation, such as various OO modeling languages.Additional domain-specific
notations, based on visual grammars can be easily included.DOME was written in
the VisualWorks Smalltalk4. The latest release of DOME (5.3) dates to 2000, and no
specific news on future development are available from the site.

Among the tools that support goal analysis techniques we shall mention OME35

which supports goal-oriented modeling and analysis withinthe i* framework. It pro-
vides users with a graphical interface to develop models. OME3 is implemented in Java
1.2 and rests upon a knowledge base which is written in Telos [26], a terminological
language.

Objectiver [3] is a commercial product that supports the Kaos method [12], its
graphical notations and the analysis process, which includes gathering of the infor-
mation to be used as a guide for the goals to be achieved, modeling, drawing up of a
report.

Finally, we shall mention theECLIPSEProject [2], an open source initiative that al-
low the integration of different tools into a single “application”. New tools are integrated
into the platform and user interface trough plug-ins that extendECLIPSEfacilities, pro-
viding new functionalities. Interesting characteristic of the platform is the extensibility,
the plug-in model simplify the extension of a tool build uponthe platform, the platform
makes available a workspace into which the tool can be installed, the workspace can be
shared between the application, moreover the platform has auser interface that can be
customized with respect to the user needs. We are currently considering the portability
of our tools within theECLIPSEplatform.

4 Cincom International offers free noncommercial versions of VisualWorks for Linux and Win-
dows

5 http://www.cs.toronto.edu/km/ome/



6 Conclusion and Future Work

This paper described an AO environment which includes a visual modeling tool that
supports model building inTroposand integrates other tools, such as the T-TOOL, a
model-checker for the verification of formal properties andAGG, a library which im-
plements graph transformation techniques that can be used to support model refinement.
We described in details the modeling environment architecture, the visual modeler and
the I2F component.

Basic motivations behind this work, such as that of favoringthe practical usage of
AO methodologies and of supporting the model-based approach to software develop-
ment proposed inTroposhas also been discussed.

The described environment implements a core subset of the requirements that have
been identified [6]. Work is in progress to port the system within theECLIPSEplatform
and to implement other requirements referring to the management of other software
development artifacts, multiple views on the model and to the support of the process
phases proposed by theTroposmethodology. Moreover, we are following the MDA
initiative by OMG which is providing standards relevant forexpressing model trans-
formations (MOF 2.0 Query/Views/Transformations), and wemay revise some of the
design choices described in the paper in order to be compliant with the emerging stan-
dards. Graph transformation techniques have been already pointed out as a promising
technology to provide mechanisms for the automatic synchronization of different views
in a model or for translating a model given in a specification language to a different
one. Along this line we are pursuing a parallel research [27]and extend the work on the
integration of the AGG system in the environment.
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