JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7 Prepared using smrauth.cls [Version: 2002/09/23 v1.02]

Research

Statistical Testing of Web r————

Applications =—
Paolo Tonella*! and Filippo Riccal _———

ITC-irst, Centro per la Ricerca Scientifica e Tecnologica, 38050 Povo (Trento), Italy

SUMMARY

The World Wide Web, initially intended as a way to publish static hypertexts on the
Internet, is moving toward complex applications. Static Web sites are being gradually
replaced by dynamic sites, where information is stored in databases and non trivial
computation is performed.

In such a scenario, ensuring the quality of a Web application from the user’s perspective
is crucial. Techniques are being investigated for the analysis and testing of Web
applications for such a purpose. However, a static analysis of the source code may
be extremely difficult (and, in general, infeasible) because of the presence of dynamic
generation of the HTML code that is part of the application under analysis.

In this paper, a dynamic analysis technique is proposed for the extraction of a Web
application model through its execution. Availability of statistical data about the accesses
to the pages generated by the Web application is exploited for statistical testing, based on
the recovered model. Test cases can be prioritized, so as to exercise the most frequently
followed paths first. Moreover, statistical reproduction of the user’s navigation paths
allows for an estimation of the reliability of the application.

KEY WORDS: Web applications, code analysis, statistical testing, model extraction.

INTRODUCTION

Web sites — collections of static hyper-documents encoded in the HTML language — are being
gradually replaced by Web applications — server side programs that dynamically generate
hyper-documents in response to some input from the user. Correspondingly, the motivation
behind being present on the Web is changing. While in the past it was a matter of following
the trend and advertising activities and products, it is now becoming a viable alternative to

*Correspondence to: ITC-irst, Centro per la Ricerca Scientifica e Tecnologica, 38050 Povo (Trento), Italy
tE-mail: {tonella, ricca}@itc.it

Received 31 December 2002
Copyright © 2000 John Wiley & Sons, Ltd. Revised 28 March 2008

2 P. TONELLA AND F. RICCA

the traditional ways of selling goods and providing services. For such tasks, static Web sites
are insufficient and more dynamism is required on the server side.

Static analysis of highly dynamic Web applications is a difficult task. In fact, the HTML code
displayed by the browser is not fixed, being produced at run-time by server programs. While
in the simplest cases a fixed HTML skeleton is filled-in with values computed dynamically,
in more complex applications even the structure of the resulting HTML page is not given
a priori, and is constructed dynamically. In such a situation, a static analysis of the server
programs generating the Web pages can hardly result in a useful model of the application.
In fact, the problem of determining the HTML code produced by a server program is related
to the problem of determining if a given execution path is feasible, which is known to be an
undecidable problem. Moreover, a Web application involves several programming languages.
On the server side, at least one programming language is used for the dynamic production of
the HTML pages (e.g., PHP, Java, Perl, VBscript, etc.). If databases are accessed, a related
query language, such as SQL, is also present. HTML statements are then generated, but
typically they are not pure HTML code, and include client side code for form validation,
client side computation, and graphical event handling (e.g., Javascript, Java applets, etc.).
Static analysis of such a variety of languages — and of all their possible interactions — is a
technological challenge.

In this paper, we propose a technique for the extraction of a model of a Web application,
obtained by statically analyzing the HTML code that is dynamically generated by the server
programs. Input values which cover all relevant navigations are pre-specified by the user, and
downloaded pages are either unrolled or merged, in order to produce an abstraction over the
set of HTML pages downloaded. The resulting model is computable in presence of high —
even “extreme” — dynamism and requires the ability to parse just HTML. The problem of
statically approximating the HTML code being generated is absent. On the other side, the
model obtained may be partial, if the inputs used to produce it do not cover all relevant
behaviors of the Web application. This is an intrinsic limitation of all dynamic analyses.

The Web application model produced in this way can be enriched with the transition
probabilities, obtained from the statistical information dumped by the Web server during
execution. In absence of ad-hoc data, the access log which is automatically recorded by the
Web server can be used. The resulting model can be interpreted as a Markov chain, on which
statistical testing can be conducted [22]. Moreover, navigation statistics can be analyzed, to
determine the average number of hyperlinks followed before reaching a given page [21], and
the usage of navigation facilities offered by the browser instead of the hyperlinks of the site.
Test cases can be generated according to the statistics encoded in the Web application model,
by performing a stochastic visit on it. The number of failures occurring in such test sessions
can be used to estimate reliability, since the behavior of users is stochastically reproduced in
the test cases. In addition to this, the paths in the Markov chain model can be sorted by
decreasing probability, thus giving a criterion for the prioritization of the test cases.

The proposed model can be semi-automatically extracted from an existing Web
application, by exploiting the algorithms detailed in section MODEL EXTRACTION. Section
STATISTICAL TESTING deals with testing process, transition probability estimation,
and statistical test case generation. Some experimental data obtained on an existing Web
application are provided in section CASE STUDY. Related works are discussed in the

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 3

successive section, while conclusions and future work are presented in the last section of the
paper.

MODEL EXTRACTION
Web application modeling

The aim of a Web application model is that of describing a Web application in terms of
composing pages and allowed navigation links. Both dynamic and static pages are to be
properly modelled. Dynamic pages are the result of executing a program on the Web server in
response to a request from the Web browser of the user. Important interactive features that
are exploited by Web applications, like forms and frames, should be part of the model, being
relevant to the navigation in a Web application.

link ¢ 0.
HTML Page
Form
url: String i .
isDynamic: boolean input: Set<Var>
counter: int hidden: Set<Couple>
input: Set<Couple>) ‘
atinput: Set<Set<Couple>> submit
hidden: Set<Couple>
splitinto
! 1 1 1 »
L oadPagel ntoFrame 5
" Frame
{optional} I TR neme: String oo
f: Frame initial page
buil redirect I,”,“,(,,,,,,,,, Parameter
redirect | {Xor} | 0.* p: Set<Couple>
ServerProgram o*
use: Set<Var>
counter: int

1

Figure 1. Meta model of a generic Web application structure. The model of a given application is an
instance of it.

Figure 1 shows the meta model used to describe a generic Web application. The central
entity in a Web application is the HTMLPage. An HTML page contains the information to be
displayed to the user, and the navigation links toward other pages. It also includes organization
and interaction facilities (e.g., frames and forms). Its URL is recorded in the attribute wurl
Navigation from page to page is modelled by the auto-association of class HTMLPage named
link. Web pages can be static or dynamic. While the content of a static Web page is fixed,

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

4 P. TONELLA AND F. RICCA

the content of a dynamic page is computed at run time by the server (a similar distinction
is proposed by Conallen [2] and Eichmann [3]) and may depend on the information provided
by the user through input fields. The boolean flag isDynamic distinguishes the two cases. The
class ServerProgram models the script/executable that runs on the server side and generates
a dynamic HTML output. When the content of a dynamic page depends on the values of
a set of input variables, the attribute use of class ServerProgram contains them. A server
side program can be executed by traversing a link from an HTML page whose target is the
server script/executable and whose attributes include a set of parameters, represented as pairs
<name, value> or by submitting a form. The server program can either redirect the request
to another server program (auto-association redirect), build an output, dynamic HTML page
(association build), or simply redirect to a static HTML page (association redirect). The latter
two cases can be distinguished only because the resulting HTML page is respectively static or
dynamic. When a server program builds a dynamic page, the input and hidden variable values
that have been provided to it are stored in the attributes input and hidden of the resulting
page, as sets of couples <name, value>. Field altInput stores alternative inputs that generate
the same dynamic page (see page merging below).

A frame is a rectangular area in the currently displayed page where navigation can take
place independently. Moreover, the different frames into which a page is decomposed can
interact with each other, since a link in a page loaded into a frame can force the loading of
another page into a different frame. This can be achieved by adding a target to the hyperlink.
Organization into frames is represented by the association split into, whose target is a set of
Frame entities. Frame subdivision may be recursive (auto-association split into within class
Frame), and each frame has a unary association with the Web page initially loaded into the
frame (absent in case of recursive subdivision into frames). When a link in a Web page forces
the loading of another page into a different frame, the target frame becomes the data member
of the (optional) association class LoadPagelntoFrame.

In HTML user input is gathered by exploiting forms and is passed to a server program,
which processes it, in response to a submit event. A Web page can include any number of
forms. Each form is characterized by the input variables that are provided by the user through
it. Additional hidden variables are exploited to record the state of the interaction. They allow
transmitting pairs of the type <name, value> from page to page. Typically, the constant value
they are assigned needs be preserved during the interactive session for successive usage. Since
the HTTP protocol is stateless, this is the basic mechanism used to record the interaction
state (variants are represented by cookies and URL parameters).

Client side computation (e.g., embedded JavaScript code), limited to input validation and
advanced presentation modes, does not affect the model. It should be reflected in the model if
used to gather user input or to perform a connection with a server side page/program. Such
cases are currently not handled automatically.

In a Web application, the same server program may behave differently, according to the
interaction state. To clarify this situation it is convenient to classify server programs into two
categories:

e Server programs with state-independent behavior.
e Server programs with state-dependent behavior.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS b)

H
bmit submit
) Submi [[currency; state=2]]
[[corporation; state=1]]
build build
_ [[curriency; state=2]]
[[corporatlon;st e=1]] D D submit
submit 1 2

Figure 2. Example of Web application model. Nodes with gray background are server programs, edge
labels contain input variables and hidden variables, separated by a semicolon, within double square
brackets.

Server programs in the first category exploit always the same mechanism to produce the
output, generating a dynamic page whose structure and links are fixed. The behavior of these
server programs is the same in every interaction state. On the contrary, server programs in the
second category behave differently when executed under different conditions. A server program
may, for example, provide two completely different computations — and consequently different
output pages — according to the value of a hidden flag recording a previous user selection.

In presence of server programs with state-dependent behavior, navigation sessions are
obtained as paths in the Web application model if server programs and related output pages are
replicated for all the possible behavioral variants. We call the resulting model an ezplicit-state
model, differing from the alternative one, called implicit-state model, in that it unrolls server
programs and dynamic pages with different behaviors into actually different entities, which are
given a progressive identification number. In this way, the page identity is not associated to a
physical entity (page or server program), but is rather differentiated according to the behavior.

Let us consider a simple financial Web application, the model of which is shown in Figure 2.
This application provides two different services, related to the stock market and to the exchange
rates. A single server program S provides both services. The home page of this application, H,
is a static page containing some descriptive material and two links to the two services. If the
user is interested in the stock market, a form gathers the name of the corporation of interest as
an input value, while the name of the currency is gathered in the form leading to the exchange
rates service. The dynamic page generated in response to the user request allows repeating
the request, specifying a different corporation within the stock market service, or a different
currency within the exchange rates service. However, when a service type has been selected,
it is not possible to switch to the other one without restarting from the home page. In other
words, the state of the interaction remains fixed after the initial selection.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

6 P. TONELLA AND F. RICCA

In the model of this Web application (Figure 2), the initial static page H is connected to two
replications of the server program S, S; and S5, corresponding to the two different behaviors
that characterize it. Correspondingly, two different dynamic pages are considered to be built
in the two different interaction states, namely D; and Ds. When the submit edge from H to
S with state=1 is followed, the input variable corporation is passed to the server program,
with the value provided by the user. When the user selects the second service, the hidden
variable state=2 is propagated through the form, together with the input variable currency.
The two target objects, S1 and Sz, respectively build the two dynamic pages Dy and D, which
display the requested information and give the user the possibility to provide an alternative
corporation/currency in input and see the related information, obtained by the same server
program S. The hidden variable state is propagated unchanged to the server program S; from
D¢, and to S5 from D-.

Dynamic model recovery

In the context of the research project WebFAQ (Web: Flexible Access and Quality), recently
launched at our research center, we developed the reverse engineering tool ReWeb [16],
supporting the analysis of existing Web applications. One of its modules, called Spider, is
responsible for the automatic extraction of the explicit-state model of a target Web application.
The main difficulty in this operation is differentiating a same server program according to the
different behaviors it may exhibit. Moreover, user input has to be simulated, so that dynamic
pages can be generated and navigation can proceed beyond the purely static part of the Web
site. To accomodate the latter issue, a set of input values are specified before running the
Spider, granting the traversal of all relevant site portions. Such values are used by the Spider,
which provides them to the server programs during the downloading of the site pages. Among
the hidden and input values that are used by the Spider for the download, some may affect
the internal state of the Web application, and consequently the behavior of the server program
being invoked. Formally, the domain of input and hidden variables can be partitioned into
equivalence classes, and the same behavior is expected to be obtained when the inputs belong
to a same equivalence class. In the example of Figure 2, such partitioning is induced by the two
possible values of the hidden variable state. When state is equal to 1, the behavior related
to the stock market service is obtained, with no regard to the values of the other variables,
while state=2 characterizes the second equivalence class of inputs of this Web application. The
input values provided to the Spider should be comprehensive enough as to cover all different
behaviors of the server programs.

Figure 3 shows the pseudocode of the procedure DownloadDynamicPage, which is used
by the Spider to download a dynamic page. The inputs to be used for the download are
provided externally (in our implementation, in a file called formInputFile.txt). When an
input line with a matching action (instr. 2: 1ine=f.action, ...) is found, an object of type
HTMLPage is built and inserted into the returned list D, for successive page scan. Such an
object has the form action as URL, and the user specified inputs as input values. It can be
noted that hidden values found in the form f are required to be the same as those specified in
formInputFile.txt (instr. 3). This condition is necessary to ensure that inputs are used in
the correct interaction state: if the same server program is activated in a different state, the

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 7

// scan file “formInputFile.txt”

DownloadDynamicPage(f)

1 import globalCounter

2 for_each line = (f.action, I1=V1&...&In=Vn, H1=W1&...&Hn=Wn)
in “formInputFile.txt”

3 iffinput = [I1, ... , In] A fhidden = [H1=W1, ... , Hn=Wn] then

4 q = new HTMLPage()

5 q.url = f.action

6 q.isDynamic = true

7 q.counter = globalCounter

8 q.nput = [I1=V1, ... , In=Vn]

9 q.hidden = f.hidden

10 q.download ()

11 D.addElement(q)

12 globalCounter = globalCounter + 1
13 endif

14 endfor_each

15 return D

Figure 3. Pseudocode of the DownloadDynamicPage procedure, that downloads a dynamic page
providing proper input values to the server program.

input line from formInputFile.txt cannot be used. This is easily detected since the related
hidden variables have different values.

Different inputs specified by the user may belong to a common equivalence class, being
associated with the same behavior of the server program, or the same behavior may be
obtained (and the same state may be reached) for different values of the hidden variables.
When this knowledge is available a priori, only one sample tuple of values is included in
formInputFile.txt. When this is not known, an additional operation of page merging is
required to unify equivalent instances of the downloaded pages. Three increasingly weaker
page merging heuristic criteria can be used to simplify the explicit state model constructed by
the Spider:

1. Dynamic and static pages that are identical according to a character-by-character
comparison are considered the same page in the model.

2. Dynamic pages that have identical structure, but different texts, according to a
comparison of the syntax trees of the pages, are considered the same in the model.

3. Dynamic pages that have similar structure, according to a similarity metric, such as the
tree edit distance, computed on the syntax trees of the pages, are considered the same
in the model.

While moving from criterion 1 to 3, the intervention of the user to validate the automatically
identified page merges becomes increasingly important, since possible errors become more and
more likely. Page merging is an integral part of the Spider procedure, to avoid the construction
of multiple copies of a conceptually same page. This contributes to producing a finite model.
In fact, a page already in the model may be downloaded an infinite number of times if not

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

8 P. TONELLA AND F. RICCA

Spider(target_page)

1 L.addElement(target_page)

2 while not (L.isEmpty())

3 p = L.firstElement()

4 L.removeElement(p)

5 if not Pages already_visited.contains(p) then

[§ if not p.isDynamic then

11 Pages_already visited.addElement(p)

12 p-download()

13 endif

14 Pagesfound = p.scanPage()

15 for_each p’ € Pages_found

16 L.addElement(p’)

17 model.addEdgeToModel(p, p’)

18 endfor_each

19 Forms = p.retrieveForms()

20 for_each f € Forms

21 Ded = p.DownloadDynamicPage(f)

22 for_each d € Ded

23 if Dynamic_pages_already_in_model.containsDynamic(d)
then

24 q = model.recoverPageAlreadyInModel(d)

25 model.addEdgeToModel(p,q)

26 addAltInput(q,d.input)

27 else

28 model.addEdgeToModel(p,d)

29 L.addElement(d)

30 Dynamic_pages_already_in_model.addElement(d)

31 endif

32 endfor_each

33 endfor_each

34 endif

35 endwhile

Figure 4. Pseudocode of the SPIDER procedure, that downloads a target Web site and builds the
related model.

merged with the corresponding one in the model. In our experience, the hyperlink structure
is less informative on the similarity between pages than the abstract syntax tree. This is why
the third page merging criterion exploits the syntactic, rather than the hyperlink, structure.
Figure 4 contains the pseudocode of the Spider module. A list L is maintained with all the
pages still to be visited. Each page in the site is considered in the body of the most external
loop. If the page is static, it is just downloaded (line 12), in case it has not been visited
previously. Then, hyperlinks are examined within the downloaded page (line 14, p.scanPage())
and the referenced pages are added to L. The model is also updated in this phase (line 17).
If the page contains forms, the related dynamic pages are downloaded (line 21) by means of
the procedure DownloadDynamicPage, described above. A dynamic page is considered to be
already in the explicit state model (line 23) if its URL is the same of another page in the model
and if it was obtained by passing input and hidden values to the server program which belong
to the same equivalence class, i.e., which are associated to the same behavior of the server

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 9

(S, corporation="atd", state=1)

(S, corporation="zpm", state=1)
(S, currency="euro", state=2)
(S, currency="dollar", state=2)

Figure 5. Example of input file for the Spider. Each input line contains the name of the invoked server
program, followed by a list of input/hidden variables with respective input/state values.

program. In this case, the dynamic page is not added to L and its input d.input is considered
an alternative input for the page (q) already in the model. Otherwise, it is inserted into L for
successive visit (line 29). When the equivalence classes characterizing the behavior of the server
programs are not known a priori, the page merging heuristics discussed above can be employed
to (semi-)automatically recognize equivalent dynamic pages and thus equivalent instances of
the related server programs. With reference to Figure 4, page merging is executed at line 23,
where potential page unification actions are detected by the containsDynamic method.

In principle, the Spider procedure is not guaranteed to terminate, because server program
nodes could be replicated an infinite number of times in correspondence with the occurrence
of states that are not recognized as already encountered before. In practice, the usage of the
page merging heuristics results (according to the authors’ experience) in a finite model. Careful
selection of the input values, as representative of all equivalence classes of inputs, ensures the
completeness of the model.

An example of input file to be used for the extraction of the model in Figure 2 is shown in
Figure 5. Each input line contains the name of the server program to be invoked (S), an input
variable (either corporation or currency), with associated input value, and a hidden variable
state, with associated state value. The Spider module starts its computation by adding the
initial page H to the list L of pages to download (target_page in Spider is H). Then, page
H is extracted from L and downloaded (it is not a dynamic page). An HTML parser scans
its content, giving the set of referenced pages and of contained forms. In our case, two forms
are retrieved. The procedure DownloadDynamicPage is invoked on both. The first form has
a hidden variable state=1, so that only the first two lines of formInputFile.txt, shown
in Figure 5, match the condition of having the same server program as action (S) and the
same values of the hidden variables. When the first line is processed, the Spider requests the
execution of the program S on the Web server with hidden variable state=1 and input variable
corporation="atd". The resulting dynamic page is downloaded by the Spider and added to
the list of downloaded dynamic pages D. A second dynamic page is generated for the second line
of formInputFile.txt, with the same hidden variable value and corporation="zpm". Such
two dynamic pages are iteratively taken into consideration at line 22 of the Spider procedure.
While the first page is surely not contained in the model, and it is therefore added to L and
to the model, the second is already in the model, since the same behavior of S was already
observed in correspondence with the first input line used. One possibility to recognize that the
second page is equivalent to the first one is to know a priory that variable state determines the
internal state of S and partitions the input domain into equivalence classes. As a consequence,

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

10 P. TONELLA AND F. RICCA

the second page is unified with the first one, belonging to the same equivalence class. If this
knowledge is not available, the two pages can be compared to recognize the possibility of
merging them. The first merging criterion is expected to fail: since the two pages report data
of two different corporations ("atd” and ”zpm”), they are expected not to be textually equal.
However, the second merging criterion is expected to succeed, in that a common page structure
is expected to be used to provide the same kind of information — even if referred to different
corporations. The input used for the second dynamic page is stored as an alternative input for
the page previously inserted into the model. The execution of DownloadDynamicPage on the
second form of the home page gives two dynamic pages that are unified in a similar way.

After the first iteration of the loop at line 2 in the Spider procedure, the list L of model
elements still to be considered contains D and D-, the two dynamic pages generated by S with
the inputs taken from the first and the third line of formInputFile.txt. Both pages contain
one form. The form of D; has a hidden variable state=1. Therefore, for the download of the
associated dynamic page, lines 1 and 2 of formInputFile.txt can be used. The first resulting
page is identical to D1, while the second one has the same structure. As a consequence, both of
them can be merged with D; (merging criteria 1 and 2 respectively). A priori knowledge about
the possibility to discriminate the equivalence classes of inputs according to the value of state
would simplify this task. The result is an edge labeled submit from D; to S;. Similarly, the
input lines to be used for the form in D» are the third and fourth lines of formInputFile.txt
and the dynamic pages obtained by form submission can be unified with D,, giving rise to a
link between Dy and S. The final model produced by the Spider is exactly the one reported
in Figure 2.

STATISTICAL TESTING

Complete testing of all paths/interactions is unfeasible for any non trivial system. Statistical
testing aims at focusing on the portions of the system under test that are more frequently
accessed, in order to ensure that the reliability of the delivered product be high. By verifying
that the output produced in the most likely interactions of the user with the system is
correct, statistical testing allows measuring and reducing the probability that an untested
user interaction occurs after product delivery.

The main phases involved in statistical testing are:

1. Construction of a statistical testing model, based on available usage data.
2. Test case generation based on the statistics encoded in the testing model.
3. Test case execution and analysis of execution output for reliability estimation.

In phase 1 probabilities are assigned to the interactions a user may have with the system. In
our case, the Web application model will be enriched with probabilities of navigation from a
page to another one. In phase 2 the most likely execution paths can be followed. Alternatively, a
random walk according to the transition probabilities encoded in the model can be conducted.
Finally, in phase 3 faults are possibly revealed. Fault occurrence data are used to predict
reliability.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 11

Testing process

Input
values

Test
criterion

ReWeb x t TestWeb Passfail
T
I~ : Test Test Test
Website Spider model generator cases executor
Coverage

Figure 6. TestWeb’s modules and their dependencies on ReWeb and the user input.

The explicit-state model of the Web application to be tested is generated by the tool ReWeb
(see Figure 6), which contains the Spider module. The operation of state merging of type 2
and 3 (see previous section) is currently performed manually, while type merging of type 1 is
automated. If no input is specified for a given dynamic page, the Spider will not expand the
model beyond the related server program. This feature of ReWeb is useful to analyze the
functioning of portions of a Web application. Partitioning the tested functionalities by cutting
the model at given nodes is important, especially for large Web applications.

As depicted in Figure 6, TestWeb contains a test case generation engine (Test generator),
able to produce a set of paths from the model, according to a user defined criterion, such as
prioritization by likelihood, or path generation during a stochastic visit, and to generate test
cases from it. Other testing criteria that the user can specify are related to structural (coverage
and data flow) testing [17]. Generated test cases are sequences of URLs which, once executed,
grant the achievement of the selected criterion. Input values in each URL sequence are those
specified for the Spider. Such inputs can be marked with the unrolling index of the server
program and dynamic page they allow to download. In this way, during testing it is possible
to obtain exactly the dynamic page with the structure required to follow a given path. In fact,
a page with the needed structure was obtained by the Spider by providing the same input
values. Such a possibility solves one of the major problems in testing traditional software:
selecting the inputs to traverse a path of interest. Testing Web applications is simpler because
branch selection can be forced, being associated to the user navigation, which is an external
input. Moreover, the existence of the hyperlink to be followed is granted if the dynamic page
is obtained under the same conditions in which it was downloaded. This can be achieved by
exploiting the same inputs that are used by the Spider.

TestWeb’s Test executor can now provide the URL request sequence of each test case to the
Web server, attaching proper inputs to each form. The output pages produced by the server
are stored for further examination. After execution, the test engineer intervenes to assess the
pass/fail result of each test case. For such an evaluation, she/he opens the output pages on a

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

12 P. TONELLA AND F. RICCA

hl.dl.com H

hli.dl.com S & state=1 & corporation="ttt"
h2.d2.com H

h2.d2.com S & state=2 & currency="euro"
hi.dl.com S & state=1 & corporation="bb"
h2.d2.com S & state=2 & currency="dollar"
h3.d3.com H

h3.d3.com S & state=1 & corporation="cc"
h4.d4.com H

h4.d4.com S & state=1 & corporation="acb"
h5.d5.com H

h5.db.com S & state=2 & currency="pound"

Figure 7. In the explicit-state model (left), dynamic pages D, and D are connected to the additional
exit node X. A (simplified) access log is shown on the right.

browser and checks whether the output is correct for each given input (functionality testing).
During regression check such user intervention is no longer required, since the oracle (expected
output values) is the one produced (and manually checked) in a previous testing iteration. Of
course, a manual intervention is still required in presence of discrepancies. A second, numeric
output of test case execution is the level of coverage reached by the current test suite. This
gives the cumulative probability of path traversal in case of statistical testing, while it gives
the percentage of entities (pages, hyperlinks, data flows, etc.) covered, in case of structural
testing. In Figure 6, the manual interventions required to reverse engineer and test a Web
application are indicated within diamonds.

Transition probabilities

In order to apply statistical testing to a Web application, it is convenient to build its usage
model. The usage model is a representation of the statistics involved in the executions of a
given application and in the input values provided. A natural choice of usage model for a Web
application is a Markov chain. In fact, each HTML page can be seen as a state and hyperlinks
in the page can be regarded as Markov chain edges leading to other states. The usage model
of a Web application can therefore be obtained from its explicit-state model. The only missing
information to make it a Markov chain is an estimate of the transition probabilities to be
associated with the edges. Values for such probabilities can be computed by using historical
information, such as that contained in the log file. It represents the (conditioned) probability
of navigating, at the next step, toward another page.

Let us consider the Web application model in Figure 2 (also in Figure 7, with exit node
and edge labels added). An example of related access log, here slightly simplified for the sake

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 13

Edge | Count | Prob.
er 3 3/5
€9 2 2/5
€3 4 1
€4 3 1
€5 1 1/4
er 3 3/4
€6 1 1/3
€g 2 2/3

Table 1. Estimation of the transition probabilities.

of presentation, is given in Figure 7 (right). In particular, time stamps are assumed to be
associated to each entry of the log, although not shown. The first column contains the name
of the host requesting a Web page. The next column contains the name of the requested page
followed by the input provided to the Web server (via GET). When requests coming from the
same host are found within a proper time interval (10 minutes in our case study, see next
section), it is assumed that navigation from a previously accessed page to a new one is taking
place. Otherwise, a direct request of a page is considered to occur. Thus, the second request
of page S made by hl.d1.com is considered to be issued from the page downloaded with
the previous request. In other words, while the first request made by hil.d1.com causes the
traversal of the edges e; and es, the second request comes from D; and results in the traversal
of e; and e3. When a request from a host is not followed by any other request from the same
host, it is assumed that the edge leading to the exit node is followed. This corresponds to
termination of the navigation session. With reference to the log in Figure 7, after the second
request of S from h1.d1.com, the edge e7, leading to page X, is marked as traversed, in that
no further request issued by the same host is present in the access log (within a reasonable
time interval).

The simple analysis of the access log described above allows marking each edge in the
Web site model with the number of traversals resulting from the access log. With reference
to the example in Figure 7, the edge traversal count reported in the second column of
Table I is obtained. Such values can be normalized into relative frequencies, approximating
the probabilities of the related Markov chain, by dividing by the sum over the outgoing edges
of each node. The result is an estimate of the probabilities of a Markov chain modeling the
usage of the site, reflecting the real world requests arriving to the Web application. In practice,
some page sequences in the access log may be not recognizable as following legal connections
between pages, due to the absence of intermediate pages which are cached by the browser and
are retrieved by means of commands such as back, forward and go-to. As a first approximation,
they can be skipped during the analysis of the access log, giving no contribution to the edge
traversal counts. A better approximation can be obtained by modeling the (minimum) sequence

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

14 P. TONELLA AND F. RICCA

Num. | Path Prob. || Num. | Path Prob.
1 €1€3€7 9/20 6 €1€3 (6563)267 9/320
2 €2€4€8 4/15 7 6264(6664)368 4/405
3 6163(6563)67 9/80 8 6163(6563)367 9/1280
4 ezeq(egeq)es 4/45 || 9 eseq(egeq)tes | 4/1215
5 eseq(egeq)’es | 4/135 || 10 eres(esez)ter | 9/5120

Table II. Paths sorted by decreasing probability.

of browser commands necessary to navigate from a page to its successor in the access log, when
no direct link exists between them.

Statistical testing techniques

The Markov chain model of a Web application can be exploited for statistical testing with two
purposes:

1. Estimating the reliability of the Web application.
2. Prioritizing the execution of test cases.

To the first aim, test cases are automatically generated according to the statistics encoded in
the Markov chain. This is easily achieved by stochastically visiting the chain, i.e. by choosing
which edge to traverse in accordance with the transition probabilities of the outgoing edges.
The resulting test suite complies with the statistics of the usage patterns and simulates a real
usage of the Web application. When test cases are executed and failures occur, the classical
measures of reliability can be made, by determining the Mean Time Between Failure (M TBF)
and estimating the probability R of correct behavior within a given time interval (reliability
models) [14]. Such measures can be useful to decide when to stop testing. For the present work,
we have used a very simple reliability model, based on the following formulas:

Rzl—i MTBF =
n

=]

~— Wy

where n is the total number of test cases executed and f is the (estimated) number of failures.

Additional reliability estimates, such as those proposed in [22] are also possible, since
a Markov chain is adopted as usage model. They include stopping criteria based on the
discriminant, the probability of a failure-free realization of the testing chain and the expected
number of steps between failure states.

To the second aim, paths in the Markov chain are ordered according to their probabilities,
given by the product of the probabilities on the traversed edges. With reference to the example
in Figure 7 and the probabilities in Table I, the paths following e; as first edge and looping
n times through ez and es; have probability 3/5(1/4)™3/4, while the paths following es as
initial edge and looping n times through e4 and eg have probability 2/5(1/3)"2/3. The sorted

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 15

list of the top ten paths is given in Table II. The next path, not included in the Table,
has probability 4/3645 (approx. 0.1%), while the overall probability of the top ten paths is
approximately 99.78%. This means that after executing 10 test cases for the paths in Table II,
the probability that the user exercises a path not seen during testing is 0.22%.

CASE STUDY

Model recovery

In the following, statistical testing of the Web application ITC-publications (http://-
publications.itc.it/), providing the on-line database of the ITC-irst (our research center)
publications, will be presented and discussed. The richness of its dynamic structure makes it
an interesting case study for modeling and testing. Papers in the ITC-publications database
can be accessed directly from the initial page of the site, db.htm, by means of three different
forms collecting user inputs. The first form permits a search by author, title, reference
number and abstract. The second form permits a free text search, referred to all document
fields (input variable query), while the third form produces a page with links to all the
publications available in the database. After submitting the first form, filled-in with correct
inputs (for example with abstract slicing or author ricca and title web), the dynamic page
ext-search.idc appears, showing the list of papers matching the inputs inserted. For each
paper, a button, implemented in HTML as a form containing a hidden variable with the paper
reference number, is displayed in the resulting Web page. In case of selection of a paper,
the dynamic page ext-view.idc is loaded. This page contains details on the chosen paper,
such as abstract and complete list of authors. Its links permit returning to the initial page
and displaying a help page (help.htm). The results of submitting the second and third forms
are respectively the dynamic pages ext-search2.idc and ext-search3.idc. The structure
of these pages is very similar to ext-search.idc. Like ext-search.idc, they show the list
of papers from which one can be selected, resulting in the generation of the dynamic page
ext-view.idc. In case the input values inserted into any of the three forms are not correct,
the result is a blank page and the only way to return to input insertion is using the back
button of the browser and going to the initial page db.htm. Figure 8 shows the explicit-state
model of the Web application ITC-publications as recovered by ReWeb with the inputs
indicated in Figure 9.

In total, construction of the model required 3 page merging operations. Two page mergings
of type 1 have been automatically detected and executed, while the other one (page
ext-search.idc, type 3), has been identified and performed manually: the three inputs
specified by the user belong to a common equivalence class, author=ricca & title=web,
abstract=slicing, and ref number=0102-01, (see Figure 9). The resulting pages have a
similar structure, thus suggesting that the related server program generates them in a similar
internal state. Actually, these three dynamic pages are produced in exactly the same way by
the server program, although with slightly different inputs. No page merging was incorrectly
detected by the implemented heuristics.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

16 P. TONELLA AND F. RICCA

html/db.htm
[[abstract=dlicing; -]]
alt: [[author=riccatitle=web; - 1] [[query=dlicing; - 1] ERROR [[- ;query=]]
alt: [[ref_number=0102-01; -]]
query/ext-search.idc query/ext-search2.idc-0 query/ext-search2.idc-1 ‘ query/ext-search3.idc
query/ext-search.idc query/ext-search2.idc-0 query/ext-search2.idc-1 query/ext-search3.idc

[[- ;ref_number=0102-01]] | [[- ;ref_number=0102-01]] [[- ;ref_number=0102-01]]

query/ext-view.idc

query/ext-view.idc

N\

html/help.htm

Figure 8. Explicit-state model of the Web application ITC-publications. Nodes with gray
background are server programs, edge labels contain input variables and hidden variables, separated
by a semicolon, within double square brackets. The dash represents the empty list.

(/query/ext-search.idc, abstract=slicing, -)

(/query /ext-search.idc, author=ricca&title=web, -)
(/query/ext-search.ide, ref_number=0102-01, -)
(/query/ext-search2.idc, query=slicing, -)

(/query /ext-search2.idc, query=#ERROR#, -)
(/query/ext-search3.idc, -, query=)
(/query/ext-view.idc, -, ref_ number=0102-01)

Figure 9. File formInputFile.txt, used to download the Web application ITC-publications.

Usage model

In order to apply statistical testing to ITC-publications, it is necessary to build its usage
model. The server log file of ITC-publications has been analyzed to estimate the transition
probabilities associated with the model edges. The log file analyzed contains user connections
during about two years, from 18-04-2000 to 12-02-2002. Each line of the log file provides, for
each user connection, the following information: date, time, name of the host requesting the
Web page (IP-number), name of the requested page, HTML status code (404 for resource not
found, 200 resource found) and User-Agent (browser) used.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 17

html/db.htm
52.6% 9.6% \6.0%
query/ext-search.idc query/ext-search2.idc 6.4% | query/ext-search3.idc

2.1%

78.3% \Ef. 6% ﬁm

query/ext-view.idc

\e%

93.0% | html/help.htm

/00.0%

Figure 10. Usage model of the Web application ITC-publications, computed ignoring navigation
through cached pages.

29.7%

37.4%

The first task was a preprocessing to remove all log entries with suffix gif, jpeg, mpeg etc.,
i.e. images, sounds and video files. Then all log entries with HTML status code equal to 404
have been deleted as well. The next task was session identification. Sessions can be precisely
identified if the logged information includes session/user identifiers (propagated to the server
as URL parameters or hidden variables), or, when cookies are used, if the related data are
stored in the log file. In absence of such kind of information, a session can be approximated, in
a log file, as a set of subsequent accesses to the Web site by a user with the same IP-number
and the same User-Agent, within a given time period (time-out). In the session identification
phase this value is quite important. In our implementation the time-out is fixed to 10 minutes,
a reasonable time in order for a session to be closed. It has been determined by manually
estimating the sessions, using the access log information and trying to avoid the loss of a
session tail (too short time-out) as well as the mix of two or more separated sessions (too long
time-out).

The analysis of the log file highlighted the presence of several consecutive page requests,
within a same session, that are not feasible according to the edges in the extracted model. 869
out of 2046 sessions exhibit such a problem. For example, many (precisely, 445) requests of
the page ext-view.idc are followed by requests of the page ext-search.idc, although in the
model (see Figure 8) there does not exist an explicit hyperlink between these two pages.

A first usage model (Figure 10) has been computed, ignoring infeasible pairs of requests
in the access log. Node X in the usage model represents the end of a user interaction (end
of a session). An edge from a given page to X, labeled with probability p, models the case
where the user navigation terminates. Its complement (navigation to another page), has thus

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

18 P. TONELLA AND F. RICCA

J htmi/db htm |__

(6, 25.8%) (€1, 61.4%) - (e9, 28.4%)

(€2, 13.9%) (€10, 27.4%)

query/ext-search2.idc (e15, 1.7%)

query/ext-search.idc query/ext-search3.idc

© (e17,50.9%) (7,66.79) | _(e13,57.6%) .. (e18,9.3%)

(e19,45%) / (e12,52.2%)

query/ext-view.idc (€5, 16.5%)

(68, 7.5%) (€14, 14.0%) (16, 0.2%)

(620, 24.4%) | htmi/helphtm

(€21, 100.0%)

Figure 11. Usage model of the Web application ITC-publications with back edges (dotted).

probability 1 — p, equal to the sum of probabilities over the other outgoing edges. In the usage
model, server programs (nodes with grey background in the model) are not represented, since
they generate the resulting dynamic pages (shown in the usage model) with probability 1.

By manually inspecting the infeasible pairs of consecutive pages, it was evident that in such
cases the navigation performed by the user comprises one or more accesses to the previously
visited page (back button in most browsers). Since this page is stored in the browser cache,
it does not generate any request on the Web server. Correspondingly, no entry is produced in
the access log. A simple algorithm has been defined and implemented to estimate the pressure
of the back button by the user during the navigation. It works in the following way: when
two consecutive pages appear in a same session of the access log for which no edge exists in
the model, the preceding pages in the same session are examined, moving backward from the
infeasible pair. As soon as a page is encountered that contains a link toward the second page
of the pair, the backward traversal is stopped and all traversed pages are used as a completion
of the session. Correspondingly, the usage model is augmented with edges that connect a page
to (one of) its predecessors, each time a backward traversal is discovered by the algorithm
described above. Considering the possibility of backward navigation, a plausible explanation
can be given for most of the infeasible sequences of pages in the access log (777 out of 869).
For example, the infeasible sequence db.htm, ext-search.idc, ext-search becomes feasible
by introducing a backward edge from ext-search.idc to db.htm, before the last request of
ext-search.idc. In fact, it is very likely that after a first search (ext-search.idc following
db.htm), the user pushed the back button, with the browser loading db.htm from the cache
and no request traced in the log file, to perform a new search. Then, after the insertion
of the parameters for the new search, the dynamic page ext-search.idc is requested for
a second time. The (feasible) path followed by the user becomes: db.htm, ext-search. idc,
db.htm (back pressed), ext-search. idc. Remaining infeasible sequences, not explained by the
algorithm above, may be due to direct accesses to a page (go-to button or complete address
specification) or to imprecise session identification.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 19

Num. | Path Prob. || Num. | Path Prob.
1 €5 165% 6 €2€13€20 19%
2 €1€7€20 100% 7 €2€14 19%
3 €1€g 46% 8 €1€e7€17€8 18%
4 erereireresy | 4.0% || 9 e1(ererr)’eresn | 1.6%
5 e1eges 2.6% | 10 eiregererean 1.6%

Total 46.6%

Table III. Paths sorted by decreasing probability.

Figure 11 shows the new usage model, inclusive of backward edges. The values of the
transition probabilities associated with the edges are changed, with respect to the previous
usage model, in particular in the case of edges connected to the exit node X. In fact, several
sessions terminate with one or more infeasible pairs of pages. Backward edges are new outgoing
edges, whose probability was previously zero. Being now greater than zero, it produces a
reduction of the probabilities associated with the other outgoing edges (such as the termination
edges).

Path selection

Table III shows the ten most probable paths in the usage model, sorted by decreasing
probability. The overall probability of the top ten paths is approximately 46.6%. The most
probable navigation (topmost path) consists of the traversal of e5 only, the edge that connects
the initial page to X. It accounts for the sessions in which the initial page is loaded and then
no further page is accessed. The second topmost path accounts for a paper search (performed
by means of ext-search.idc), followed by the selection of one entry in the search result,
visualized by means of ext-view.idc. Then, the session terminates. The third topmost path
consists of the same navigation as the second one, without entry selection.

The Total Probability (TP) of a set of paths (such as 46.6% for those in Table III) is the sum
of the probabilities of the paths. If paths are interpreted as test cases for the Web application,
a set of paths with a high TP is a test suite that provides a statistically more complete test
than a test suite with lower TP. Correspondingly, test cases are generated from paths sorted
by decreasing probability. By adding more test cases, the TP increases and with an infinite
number of test cases this value tends to 100%. Table IV shows the values of TP for an increasing
number of test cases (n).

For example, if we execute the 500 most probable test cases, instead of the most probable 20,
the TP becomes 80.1% (from 55.3%). This means that after executing the 500 most probable
test cases, the probability that the user exercises a path not seen during statistical testing is
19.9% (i.e., 100% - 80.1%). With 20000 test cases the TP becomes 92.2%.

Figure 12 gives a graphical representation of the data in Table IV. The abscissa represents
the number of test cases, while the ordinate gives the TP value. It is apparent from the

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

20 P. TONELLA AND F. RICCA

Test cases (n) | TP Test cases (n) | TP
10 46.6% || 1000 83.3%
20 55.3% || 1500 84.9%
30 59.7% || 2000 86.0%
50 64.6% || 2500 86.8%
100 70.2% || 5000 88.9%
200 75.0% || 10000 90.7%
300 77.4% || 20000 92.2%
500 80.1%

Table IV. Total probability of the n most probable paths.

100 T T T

60

Total probability

40 |

20 -

0 1 1 1

0 500 1000 1500

2000

2500

3000

3500

4000

Number of test cases

Figure 12. Plot of the total probability vs. number of test cases .

4500

5000

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using smrauth.cls

J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7

STATISTICAL TESTING OF WEB APPLICATIONS 21

plot that beyond 500 test cases, the growth rate of the curve becomes smaller and smaller.
Correspondingly the extra effort necessary to produce, execute and check additional test cases
is not justified in terms of statistical test thoroughness.

Reliability estimation

To compute the reliability R of ITC-publications, one thousand test cases (n = 1000)
have been generated, by performing a stochastic visit of the Markov chain model of the Web
application. Correspondingly, the (estimated) number of failures f is 415.25 (see below), and
the resulting reliability R is 58.5% (R = 1— f/n). This means that the existing Web application
is executed 58.5% of the times without failures. In the remaining cases, one or more failures
occur, resulting in a user dissatisfaction. The presence of failures indicates that defects are
still present in this Web application. Their impact in terms of impossibility to satisfy a user
request is remarkable: according to our user model only 58.5% of the sessions can be completed
successfully. In all other cases, the defects in the Web application produce a user observable
failure and the session terminates without providing the searched information. Actually, the
estimated reliability applies to new users, having no prior experience with this Web application.
On the contrary, returning users are expected to be aware of the defect, and correspondingly
avoid the bugged input sequence.

Let us consider the observed failures in more detail. Execution of the test case number 2
in Table IIT highlights an anomalous behavior, associated to a defect of the server program
ext-search.idc, used by the ITC-publications application. When the search is made by
abstract, a text, expected to appear in the searched paper abstract, is specified in the first
form of the initial page. The text specified by the user is assigned to the variable abstract. The
anomalous behavior occurs each time this variable is assigned a non empty value, regardless
of the values of the other variables of this form (collecting author, title and reference number,
as other possible inputs). If abstract is a non empty string, an no other search criterion is
specified, the entire database of publications is reported in the output (a very long list), with
no filtering in place at all. If other search criteria are specified in addition to the abstract,
the latter is ignored: the presence of search data about the abstract is not handled and results
in an incorrect output, with no regard to the other form fields.

The main problem with the estimation of the reliability R for this Web application is that
a failure occurs each time a search is made through the first form and the abstract is specified
as search criterion. While our usage model provides an accurate estimate of the probability of
a search made through the first form, we have no data from which to estimate the number of
times a search includes the specification of the text expected to appear in the abstract. In fact,
the values submitted by forms (via POST) are not saved in the access log, and no additional
logging facility was in place in the time interval considered. We have consequently made a very
rough estimate of the probability that a user inserts some data in the abstract field. Since
the form permits a search by author, title, reference number and abstract, there are 16
different combinations of inputs (no field specified, field 1 specified, field 2 specified, ..., all
four fields specified). Eight combinations out of 16 have the field abstract filled in, while the
other 8 do not. If the probability of these 16 cases is considered to be uniform, the probability
to fill in the field abstract is 50%. The main limitation of this estimate is that it might be

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

22 P. TONELLA AND F. RICCA

the case that the 16 possible combinations are not equally probable at all. If for example, the
insertion of data about the abstract is less likely than the other data, a lower probability of
having a failure would be obtained.

Among the considered 1000 paths, 678 submit the first form at least once (in these paths the
edge e; is contained at least once). When e; appears in a path exactly once, the probability
of a failure is p = 0.5, i.e., the probability of filling in the abstract field. For paths with two
occurrences of e;, the probability of not producing a failure is (1—p)? = 0.25 (both occurrences
of e; do not contain the field abstract). Its complement, 0.75, is the probability of a path
with failure. With 3 occurrences of e; a failure has a probability 1 — (1 — p)® = 0.875, and in
general, when a path contains k occurrences of ey, the probability of observing a failure is

P[Faill =1—- (1 —p)*

The mean number of observed failures for the 1000 test cases can thus be computed as
the sum of the probabilities P[Fail] over all test cases (with P[Fail] = 0 for test cases not
including ey, as results also from the formula above with k£ = 0). This sum is equal to 415.25.
If used as the estimated value of f (total number of failures observed), it produces a reliability
equal to 58.5%. This means that the analyzed application is expected to fail providing the
requested information to the user about half of the times, due to the presence of e; in the
navigation path and to the specification of the field abstract.

Discussion

The structure of a Web application is typically associated to a highly connected graph,
which is often one strongly connected component as a whole. Back edges and hyperlinks
providing alternative navigations are quite common, making the resulting structure close to
a fully connected graph. On the contrary, state/structural models used for statistical testing
of traditional software are typically simpler graphs. The main consequence of this difference
is that the number of paths that can be followed, with a proper upper bound for the loops,
tends to be much higher for Web applications than for traditional applications, since several
(unstructured) ways to go back to a same starting point are available in a Web application.
When the graph representation of the Web application is used for statistical testing, such
a difference has a very negative impact on the ability to reach a high value of the total
probability (TP) of the considered paths. In fact, if a loop is traversed k times in a path, the
overall probability of the path is equal to the loop free probability multiplied by ¢*, where q is
the probability of traversing the loop. Since the loop factor ¢* decreases exponentially with k,
as soon as loop traversals are included in the considered paths, the contribution of additional
paths to the TP becomes small. In other words, when the structure of the Web application is
strongly connected, loop probabilities tend to make the contribution of new test cases to the
TP small. The result is that it is difficult to achieve high values of TP and the user is expected
to live with a Web application containing paths that have a non negligible probability of being
traversed, but have never been exercised during testing. For Web applications with an internal
state having dependences on the specific path followed, this results in a limited efficacy of the
test phase. It is thus preferable to limit as much as possible the dependences of the internal

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 23

state on the path followed. Ideally, only the immediate predecessor should affect the internal
state of the application.

For the present work, the usage model constructed from the access log consists basically of
an estimate of the probabilities associated with the possible navigation paths. However, when
the user navigates along a given path, input values are inserted into the forms encountered
during the navigation. A more complete usage model should include also an estimate of the
probabilities that a given input (or an input from a given equivalence class) be inserted into a
form. In fact, the occurrence of a failure depends both on the followed path and on the inserted
inputs. The absence of information about the probability of the inputs affects the statistical
significance of the test cases that are produced, and the estimate of the reliability of the Web
application. As regards the test cases, they should cover the most probable paths as well as the
most probable inputs, while in our work we have been able to pursue only the first objective.
As regards reliability, if inputs are considered uniformly distributed, both an overestimate
and an underestimate are possible. If the inputs generating the failures are less likely than
estimated according to a uniform distribution, reliability will be higher than estimated, Vice
versa, it will be lower if failure inputs are more likely than in the uniform distribution.

RELATED WORK

Various Web application modeling methods have been proposed for different purposes, such as
testing [8, 9, 11], architecture recovery [5, 10] and design [2, 6]. Each method emphasizes some
particular aspect of a Web application. The representation adopted in [10] is similar to the one
proposed in [2]. The latter work is focused on forward engineering and is suited for the high
level specification of a Web application, while the conceptual model proposed in [10] is focused
on a reverse-engineering process. In fact, it better highlights the behavior of and the dynamic
interaction between the elements in an existing Web application. In the adopted representation,
differences between static client pages and dynamic client pages, passive Web objects (e.g.
images) and active Web objects (e.g. scripts) are remarked, and interface objects (i.e., objects
that interface the Web application with a DBMS or an external system) are added. On the
contrary, our model aims at explicitly representing user navigations. Consequently, internal
entities such as interface objects, and passive and active Web objects, are not considered.

Recently, some testing tools have been proposed to support functional testing of Web
applications [7, 11, 12]. The black-box testing tool proposed in [12] is based on capture/replay
facilities: it records the interactions that a user has with the graphical interface and repeats
them during regression testing. The tool described in [7] supports the specification of test
cases in XML and provides powerful facilities to encode the related oracles. Operations such
as retrieving a node in the abstract syntax tree of the resulting page and checking a value
(also by means of regular expressions) are available. The authors of [11] exploit a slighlty
different format for the specification of test cases, based on decision tables that include input
values for each execution variant and expected outputs. Execution is automated by their
tool WAT. We share with these works the ability to automate test case execution and the
focus on functionality testing, but differently from them we take also navigation statistics into
consideration for test case construction.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

24 P. TONELLA AND F. RICCA

In [9] traditional data flow testing techniques are extended to Web applications. The data
flow information is captured using various flow graphs. Control flow graph and interprocedural
control flow graph are used to discover def-use chains present in the scripting portion of a client
Web page or present in a server program, while object control flow graph and composite control
flow graph permit to compute two more types of def-use chains. The first one is associated with
different function invocation sequences, depending on the user interaction (scripting events),
while the second captures def-use chains between different pages, where a variable is defined
in a page and is used in a server program.

A statistical technique is proposed in [1] for the automatic selection of the paths to be
exercised in a static Web site. Similarly to our work, the number of invalid links encountered
along the test paths allows estimating the site reliability, i.e., probability that a user completes
the navigation without errors.

Statistical Web testing has been proposed in [8]. The main differences between our method
and theirs are in the model extracted and in the type of failures considered. The approach in [8]
is based on UMMs (Unified Markov Models), generated using the FastStats log file analysis
tool. This tool analyses the data in the access log and produces the hyperlink tree view, a
tree-structured graph that shows the Web site architecture as well as the direct hits (edge
traversal count) from parent pages to child pages. In contrast, we construct an explicit-state
model, which captures also the dynamic aspects of a Web application (ignored in [8]), and
we perform functionality testing. The usage model of our approach, similar to their UMMs, is
obtained in a second time, by decorating the explicit-state model with probabilities deduced
from the log file. The failures considered by their method are those present in the access log
and error log, i.e., failures such as ”permission denied” (accounting for unauthorized access
to a Web resource) or file does not exist” (the requested file was not found in the system).
Our technique permits to discover these types of failure. In addition, our technique detects
the behavioral deviations from the user expectations (functionality testing) not reported in log
files, as follows: the output pages are inspected by the test engineer to assess whether the test
cases have been passed or not, going beyond the information about static failures reported in
the log files.

Statistical analysis of the user access to Web resources is widely exploited in Web usage
mining [4, 13, 15, 20]. The purpose of these works is quite different from ours. Data
mining techniques are applied to discover usage patterns from Web data, such as those
recorded in a (possibly extended) log. Obtained information is useful for Web personalization,
recommendation, and navigation improvement.

In our previous works [16, 17, 18, 19] we focused on Web model definition and construction,
Web reengineering, and structural testing. Our Web application model has been described
in [16, 17]. Static analysis based on such a model are proposed in [16], while white box,
coverage testing is investigated in detail in [17]. However, the algorithm for the dynamic
recovery of a Web application model is not thoroughly described in neither of the previous
works [16, 17]. Testing processes are discussed in [19] with reference to the typical life cycle
of a Web application. Examples of analyses and transformations aimed at Web restructuring
are provided in [18]. The present work, which extends [21], builds upon our previous works
on modeling and testing. Its novel contribution is in the analysis of the navigation statistics

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 25

in order to drive testing. Moreover, it provides detailed algorithms for dynamic model and
Markov chain construction, as well as a preliminary empirical assessment.

CONCLUSIONS AND FUTURE WORK

A model of dynamic Web applications has been presented and used for the definition of
statistical testing techniques. The model can be extracted from an existing Web application
by means of a semi-automatic procedure, requiring user involvement only in the specification
of a set of input values covering all the internal states of the application. Partial models can
still be constructed and are still of interest whenever full coverage of all possible internal states
is not granted by the available set of inputs.

The proposed model has been recovered for an existing Web application. Information
available from the access log has been used to estimate transition probabilities. A stochastic
visit of the resulting Markov chain has been performed to generate test cases in agreement with
the typical usage patterns, leading to an estimate of the reliability of the analyzed application,
which was quite low, due to a failure occurring along a quite frequently accessed path. The
statistical information encoded in the Markov chain model has been exploited also to prioritize
test cases, from those exercising the most likely paths to the less likely ones.

A critical review of the results obtained on the case study highlights some directions for our
future research. A test case is associated to a path in the Web application model. In the Web
application we considered for testing, the ability of a test case to reveal a defect depended
only and exclusively on the presence (absence) of a given edge of the model in the path, and
on the input values inserted into the source page of such an edge, with no regard to the path
length and to the input values inserted previously. The reason for this is that the considered
application has a very simple state model, where the internal state is directly induced by the
values inserted into a form, and it is reset after the execution of ext-view.idc, which is at
most at distance 2 from the form. Previous internal states have no effect on the current one
and the current one does not influence the future states, if outside the 2-step path. In such
cases, it makes no sense to consider paths of length greater than 2, since they are functionally
equivalent to those of length 2. In other words, it is possible to split the given Web application
into a set of smaller sub-applications, consisting of three pages each: a page with a form to be
filled in for the search (with the form varying according to the search criterion), the dynamic
page with the search result, and the dynamic page produced by selecting an entry from the
search result. Testing of the sub-applications is of course much less expensive than testing the
whole application (full coverage of all paths is easily achieved for the sub-applications). The
presence of a very local state of a Web application is, in our opinion, a quite general feature
of several existing applications. This is partially explained by the nature of the interactions
mediated by the Web, which have typically the form of an input submission followed by a
resulting page, with the possibility to interrupt the navigation at every moment. Moreover,
ensuring the expected behavior in case of long chains of dependences is a difficult task, due
to the (typically) high connectivity of the Web application structures (see ‘Discussion’ in the
CASE STUDY section). The possibility to identify independent portions of a Web application

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

26 P. TONELLA AND F. RICCA

that can be tested separately seems to be an important issue, and will be the subject of our
future work.

Another aspect where the present work can be improved is the usage model constructed for
a Web application. Currently, we are not modeling the statistics of the input values inserted by
users into forms, in case of submission via POST, since such values are not recorded in the access
log. However, the results obtained on our case study indicate that an accurate estimate of the
reliability can be obtained only if the usage model includes the statistics of the input values.
In order to obtain them, it is necessary to develop an instrumentation tool to automatically
log the inputs submitted by the user when requesting the generation of a dynamic page. This
is also a topic of our future research.

REFERENCES

1. W. K. Chang and S. K. Hon. A systematic framework for ensuring link validity under web browsing
environments. In Proc. of the 13th International Software/Internet Quality Week, San Francisco,
California, USA, 2000.

2. J. Conallen. Building Web Applications with UML. Addison-Wesley Publishing Company, Reading, MA,
2000.

3. D. Eichmann. Evolving an engineered web. In Proc. of the International Workshop on Web Site Evolution,
Atlanta, GA, USA, October 1999.

4. Andreas Geyer-Schulz and Michael Hahsler. Evaluation of recommender algorithms for an internet
information broker based on simple association rules and on the repeat-buying theory. In Brij Masand,
Myra Spiliopoulou, Jaideep Srivastava, and Osmar R. Zaiane, editors, Fourth WebKDD Workshop: Web
Mining for Usage Patterns € User Profiles, pages 100-114, Edmonton, Canada, July 2002.

5. A. E. Hassan and R.C. Holt. Architecture recovery of web applications. In Proc. of International
Conference on Software Engineering, Orlando, Florida, USA, May 19-25 2002.

6. T. Isakowitz, A. Kamis, and M. Koufar. Extending RMM: Russian dolls and hypertext. In Proc. of
HICSS-30, 1997.

7. Xiaoping Jia and Jordan Hongming Liu. Rigorous and automatic testing of web applications. In Proc.
of the DePaul CTI Research Symposium (CTIRS), Chicago, USA, November 2001.

8. C. Kallepalli and J. Tian. Measuring and modeling usage and reliability for statistical web testing. IEEE
Transactions on Software Engineering, 27(11):1023-1036, November 2001.

9. C-H Liu, D. C. Kung, P. Hsia, and C-T Hsu. An object-based data flow testing approach for web
applications. International Journal of Software Engineering and Knowledge Engineering, 11(2):157-179,
April 2001.

10. G. A. Di Lucca, M. Di Penta, G. Antoniol, and G. Casazza. An approach for reverse engineering of web-
based application. In Proc. of the 8th Working Conference on Reverse Engineering (WCRE), Stuttgart,
Germany, October 2001.

11. Giuseppe A. Di Lucca, Anna Rita Fasolino, Francesco Faralli, and Ugo De Carlini. Testing web
applications. In Proc. of the International Conference on Software Maintenance (ICSM), Montreal,
Canada, October 2002. IEEE Computer Society.

12. Edward Miller. The web site quality challenge. - companion paper: ”website testing”. In Proc. of QW’98,
11th Annual International Software Quality Week, San Francisco, CA, USA, May 1998.

13. Bamshad Mobasher, Robert Cooley, and Jaideep Srivastava. Automatic personalization based on Web
usage mining. Communications of the ACM, 43(8):142-151, 2000.

14. J. D. Musa. Software Reliability Engineering. McGraw-Hill, NY, 1998.

15. Mohammad El-Ramly Nan Niu, Eleni Stroulia. Understanding web usage for effective dynamic web-
site adaptation. In C. Boldyreff and P. Tonella, editors, Fourth International Workshop on Web Site
Evolution, pages 53—62, Montreal, Canada, October 2002. IEEE Computer Society.

16. F. Ricca and P. Tonella. Web site analysis: Structure and evolution. In Proceedings of the International
Conference on Software Maintenance, pages 76-86, San Jose, California, USA, 2000.

17. F. Ricca and P. Tonella. Analysis and testing of web applications. In Proc. of ICSE 2001, International
Conference on Software Engineering, Toronto, Ontario, Canada, May 12-19, pages 25-34, 2001.

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

STATISTICAL TESTING OF WEB APPLICATIONS 27

—
[e]

. F. Ricca, P. Tonella, and I. Baxter. Web application transformations based on rewrite rules. Information
and Software Technology, 44(13):811-825, 2002.

. Filippo Ricca and Paolo Tonella. Testing processes of web applications. Annals of Software Engineering,
14:93-114, 2002.

. Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan. Web usage mining: Discovery
and applications of usage patterns from web data. SIGKDD Ezplorations, 1(2):12-23, 2000.

. Paolo Tonella and Filippo Ricca. Dynamic model extraction and statistical analysis of web applications.
In Proc. of the International Workshop on Web Site Evolution (WSE), pages 43-52, Montreal, Canada,
October 2002. IEEE Computer Society.

2. J. A. Whittaker and M. G. Thomason. A markov chain model for statistical software testing. IEEE

Transactions on Software Engineering, 20(10):812-824, October 1994.

—
©

[\
(=}

N
=

N

Copyright © 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1-7
Prepared using smrauth.cls

