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Abstract. Web service choreography languages provide a way to de-
scribe the collaboration protocol of multiple services that exchange in-
formation in order to achieve a common goal. This description may be
seen as a specification that should be respected by the joint behavior
of the set of services implementing the choreography. Such a confor-
mance requires that (i) the observable behavior of the implementation
corresponds to the behavior described by the protocol specification, and
(ii) the business information is properly managed, guaranteeing that
the participants have a shared knowledge about it, according to what is
specified in the choreography. In this paper we present a choreography
conformance analysis approach that addresses both the behavioral corre-
spondence and the business information management. The key features
of the approach are the capability to deal with asynchronous interactions
and the ability to model and analyse the data managed and exchanged in
the protocol, thus providing more accurate verification results. We also
present symbolic techniques based on these formalizations that can be
used for model checking of the choreography conformance.

1 Introduction

Web service technology enables the development of complex heterogeneous, dis-
tributed applications, facilitating the specification, deployment, and enactment
of remote software components accessible on the web via standardized proto-
cols. The ability to integrate the existing services owned and managed by dis-
tinct stakeholders, obtaining new composite business applications, is one of the
fundamental ideas underlying the Web service technology paradigm. Among the
various aspects that need to be specified to fully describe a Web service composi-
tion, the representation of a stateful and coordinated behavior of the composition
plays a prominent role. A wide range of Web service standards and languages has
been proposed for these purposes [1,2,3]. The Web Services Choreography De-
scription Language (WS-CDL, [3]) is particularly relevant for the specification
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of the compositions, as it provides a way to describe the observable behavior
of the collaboration from the global point of view. One of the main goals of
the choreography description is to define a reference model of the composition
that the real service implementations should conform to. Conformance testing
refers to the verification that the joint behavior of the composition of the service
implementations corresponds to that described in the choreography.

The conformance analysis, however, does not amount only to check the cor-
respondence between the sequences of externally observable message exchanges
generated by the composition of service implementations and the collaboration
protocol specification. It is also necessary to verify that the information of the
protocol is being managed and distributed accordingly, and that the partici-
pants have a common view of the business data described in the choreography.
The management of business information in conformance testing is complicated
by the fact that WS-CDL allows for specifying in a declarative way that cer-
tain pieces of information should be synchronized either as a result of a certain
data exchange (interaction alignment) or of the protocol execution as a whole
(choreography coordination), without explicitly describing and constraining the
mechanisms that should implement them.

In this paper we present a formal analysis framework that allows for the
verification of the conformance between the collaboration specification and the
composition of service implementations. The presented framework is based on
our previous work [4] that provides a formal model for the compositions of local
participants implementations. The key feature of this framework is the ability to
model and analyse compositions, where the interactions are asynchronous, and
the messages may be reordered and stored in unbounded queues.

In this work, we extend the approach of [4] in two ways. First, we enrich the
model with the capability to represent and manage data-related constructs (e.g.,
variables, conditions, assignments), thus providing a way to model the data-flow
of the compositions. Second, we introduce a formalism for the global model that
allows for the choreographic description of the compositions. Based on these
formalisations, we define the choreography conformance as a kind of bisimula-
tion relation, emphasizing the asynchrony of the message communications. We
also present formal definitions for the most common information alignment re-
quirements, such as the interaction coordination alignment rules presented by
WS-CDL. Furthermore, we define a symbolic representation of the underlying
models, and propose finite-state model checking techniques for verifying the con-
formance between the implementing composition and the choreography specifi-
cations.

The paper is structured as follows. Section 2 introduces the conformance prob-
lem using variants of a simple example. Section 3 defines the formal models for
the data- and control-flow of the underlying systems from the global perspective
and as a composition of interacting local services. In Sect. 4 we present the no-
tions of the asynchronous conformance relation and the information alignment
rules, and discuss the symbolic analysis techniques suitable for the conformance
verification. Concluding remarks and related works are discussed in Sect. 5.
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2 Modelling Web Services Compositions

In order to illustrate the problems related to the conformance between the speci-
fication of a Web service composition and its implementation, we consider several
variants of the Request For Quotation (RFQ) case study. The goal of the compo-
sition is to combine purchasing and delivery functionalities in a single business
process, involving several participants. Thus, the composition describes the in-
teractions of three independent services, namely a buyer, a seller, and a shipper.

We model the scenario using a WS-CDL [3] specification that describes the
collaborations between the participants from the global perspective. WS-CDL
specifications identify the participants of the composition, their variables, the
interactions between the partners, and the dependencies between these inter-
actions, such as control-flow and data-flow dependencies, transactional require-
ments etc. An example of the choreography specification is represented as a UML
activity diagram in Fig. 1(a). The elementary actions in the diagram represent
message exchanges, like request or offer; the decisions points, like the choice
to accept or reject the offer; the silent internal activities, like the verify activity
used to check the presence of the product.

The composition implementation is represented as a set of local specifications,
one for each participant of the collaboration, defined in an appropriate language,
e.g. BPEL [1]. These local models may represent either the real services, or rather
the behavioral interfaces of the participants, to which the real implementations
should conform [5]. Each local specification describes the (stateful) behavior of a
particular service. It defines the operations that are triggered upon the invocation
of the service. These operations include variables assignments, invoking other
services and receiving responses, and structured activities like sequences, loops,
conditional choices, etc. Examples of the local protocols, as those of the buyer
and the seller, are represented as UML diagrams in Fig. 1(b).

It is important to note that the implementation description may include sig-
nificantly more activities and even participants than is specified in the chore-
ography description. These auxiliary elements are used to ensure the protocol,
coordinating and aligning the main parts of the system.

2.1 Behavioral Correctness

The choreography model represented in Fig. 1(a) describes the following business
scenario. First, the buyer asks the seller for a particular good, sending a request
for quote. The offer is prepared and sent back to the buyer. In this moment two
situations are possible: either the buyer accepts the message and the process
continues with the confirmation and a shipment engagement; or the acceptance
does not happen within a certain time limit, the offer is considered invalid, and
the whole procedure terminates.

This choreography specification defines the requirements to the implementing
compositions. That is, an implementation should satisfy all the control-flow and
data-flow requirements of the model. Consider the BPEL processes that are sup-
posed to implement the participants of the above scenario (Fig. 1(b)). It is easy
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Fig. 1. RFQ case study

to see that these processes, when composed together, satisfy the specified chore-
ography only under the assumption that the interactions are synchronous, i.e.,
a message emission is possible only if it is immediately followed by a reception.
This assumption, often used in modelling of Web service compositions, may be
violated in real settings due to the asynchronous nature of Web service interac-
tions. Indeed, since the buyer and the seller are independent, it is possible that
the former emits the acceptance message simultaneously with the timeout of the
seller. This leads to a state, where the seller has terminated the execution, while
the buyer waits for the offer confirmation. This scenario may not be detected if
the assumption on synchronous interactions is applied.

In order to satisfy the choreography specification, some auxiliary activities
should be performed. In particular, the accept message should follow some avail-
ability checking interaction, where the the buyer asks for the possibility to accept
the order. In case of positive response, the acceptance is invoked, otherwise the
buyer terminates. On the other side, the seller waits for this availability checking
message, and responds negatively only if the timeout has expired.

2.2 Information Alignment

Figure 2(a) represents a modified choreography specification of the RFQ case
study. Here, instead of termination on timeout, the seller iteratively provides the
buyer with the updated information about the requested product (interaction
refresh), until the latter does not accept the offer.

The process implementations of the participants are presented in Fig. 2(b). In
the buyer process the decision to accept the offer is performed in parallel with
the loop, where the offer information is continuously updated on the reception
of refresh message. Analogously, the seller repeatedly waits for either an ac-
ceptance message or for a timeout expiration. The boolean variables (done and
accepted) are used to control termination of the loops.
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Fig. 2. RFQ case study: iterative quoting

The most relevant property that this choreography should satisfy is the in-
formation alignment between the participants. In particular, when the offer is
accepted after several updates, both the buyer and the seller should have a com-
mon knowledge on the current offer instance. Such a requirement is modelled
in a declarative way in WS-CDL, by marking certain interactions (e.g. refresh
and accept), as aligned interactions.

It is easy to see that the given implementation may violate this requirement.
Since the partners are independent, the timeout and acceptance invocations may
happen simultaneously. As a result, the local values of the accepted offer may be
different. Another negative scenario happens when the acceptance is performed
after several updates. If the message queue of the buyer service is not ordered,
there is no guarantee that the accepted offer is the last emitted by the seller. The
necessity to guarantee the correctness on the information alignment requires the
analysis techniques that go beyond the verification of the behavioral correctness.

2.3 Composition Coordination

Apart from the alignment of a particular interaction, it is often required that
the participants of the choreography agree on the final state of the collabora-
tion activity. This requirement, referred in WS-CDL as choreography coordina-
tion, states that either all the participants suffered an exception, or all of them
completed successfully (and, consequently, their finalization is also agreed). In
WS-CDL notation it is allowed to declare a coordination requirement without ex-
plicitly modelling the corresponding coordination interactions. A choreography
implementation, however, should satisfy this requirement by providing special
coordination message exchanges.

Consider the choreography model represented in Fig. 3(a). After the confir-
mation of the availability of the product, the seller interacts with a new actor,
namely Credit Card Agency (CCA), in order to verify the payment information
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Fig. 3. RFQ case study: coordination management

of the buyer. This verification may result in a fault message, and the seller enters
its exception state. In order to guarantee that the exception is propagated to the
buyer, an auxiliary communication should be instantiated between these actors.
The corresponding implementation is presented in Fig. 3(b). After the reception
of the order confirmation the buyer waits for the additional messages that allow
to distinguish the resulting state of the protocol. If the credit check failed, the
seller sends the rejectOrder message to the buyer, and the latter knows that
the exception occurred and the composition terminated abnormally.

These examples illustrate two important problems that should be addressed
by a formal framework for validation of choreography specifications against com-
positions of service implementations. First, it is necessary to check the confor-
mance of the behavior of the composition of services to the behavior, described
in the choreography model. Doing this, it is important to take into account the
asynchronous nature of the Web service communications, i.e., the possibility
of message intersections and reorderings, variety of the implementations of the
queueing mechanisms. Second, it is necessary to validate that the implementa-
tion satisfies the alignment requirements, declared in the choreography model,
as those reflecting the interaction alignment and the choreography coordination.

3 Formalization

The formal model we use as a basis for the required analysis techniques consists
of three parts, namely the data model, the choreography model, and the imple-
mentation model. The data model provides a formalisation of the data manipu-
lated by the services and is used to reason on the data flow of the compositions.
The control flow on the other hand, is defined by the choreography model, used
to represent a behavior of the WS-CDL specification, and by the implementa-
tion model, used to represent a behavior of the composition of several existing
services, specified, e.g., in BPEL [1].
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3.1 Data Model

We model the data manipulation in Web service compositions using the following
notations. Given a set of typed variables V and a set of typed functions F , the
expressions and terms over the variables and functions are defined as follows:

– E ≡ (t1 = t2) | ¬e | (e1 ∧ e2) that is equality between terms, negation or
disjunction of expressions;

– T ≡ v | f(t1, . . . , tn), with v ∈ V and f ∈ F , that is a variable or function
call on terms.

We assume a fixed interpretation of typed functions. For the interpretation
of variables, instead, we use valuation functions g that map variables v ∈ V to
their values. We write g |= e to denote that the expression e evaluates to true
under the valuation g. A condition φ ∈ Φ is an expression of the form presented
above. An assignment ω ∈ Ω has the form (v := t). We denote an update of the
valuation g with the assignment ω as upd(g, ω).

3.2 Choreography Model

The formal model of choreography is based on the notion of roles and actions. A
role represents the behavior of a particular participant of the composed system.
During the protocol execution, the role can be in one of its possible states and
can evolve to new states as a result of performing some actions. Moreover, each
role is possibly equipped with a set of typed variables.

We model message communications actions as interactions defined on a set
of service operations (or message types) M. The signature of the interaction
has the form (rs, rd, μ, v̄s, v̄d), where rs and rd are the roles of the sender and
receiver respectively, μ is the service operation, and variables v̄d of the receiver
are populated with the values of the corresponding variables v̄s of the sender.
Set of interactions is denoted as AO.

We also define internal actions Aτ , which are used to represent evolutions of
the system that do note involve interactions between services. An internal action
aτ has the form (Rτ , τ), where Rτ ⊆ R denotes a subset of roles that perform an
action, and τ is used to denote the internal action itself1. The set of all actions
is denoted as A.

We model a choreography behavior as a Global Transition System (GTS).
Informally, we represent a global state of the choreography as a vector s̄ =
〈s1, . . . , sn〉, where si is a local state of the role ri. We denote a vector with
component si updated to s′i as s̄[s′i/si]. The behavior of the choreography is
defined by the global transition relation T . The relation defines conditions, under
which the action can be performed, and effects of these executions, which specify
the modification of the states and variables of the participants.

1 The possibility of a group of participants to participate to an internal action is used
in WS-CDL to model that the branching condition may be evaluated simultaneously
by a group of roles.
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Definition 1 (GTS). A global transition system representing the choreography
of n roles is a tuple Σp = 〈V ,S,S0,A, T 〉, where

– V =
⋃

i Vi is a set of all the role variables;
– S ⊆ Si× · · · ×Sn is a finite set of global states and S0 ⊆ S is a set of initial

states;
– A = Aτ ∪ AO is a set of actions;
– T ⊆ S × Φ × A × Ω∗ × S is a global transition relation. A transition

(s̄, φ, a, Ω, s̄′) ∈ T if
• a = (ra, rb, μ, v̄s, v̄d) and s̄′ = s̄[s′a/sa, s′b/sb], or
• a = (Rτ , τ) and s̄′ = s̄[s′i/si] for each ri ∈ Rτ .

Let γ = 〈s̄, g〉 be a configuration of the choreography. The transition of GTS
(s̄, φ, a, Ω, s̄′) is fireable in γ only if g |= φ. The resulting configuration is defined
as 〈s̄′, upd(g, Ω)〉. We write γ

μ→ γ′, if the action a has the form (rs, rd, μ, v̄s, v̄d),
and γ

τ→ γ′ otherwise. We denote a set of transitions, fireable in γ, as out(γ).

3.3 Implementation Model

We model a system that implements a given choreography specification as a com-
position of local transition systems (LTSs). Each LTS represents the behavior
of one of the participants. The implementation model may include more par-
ticipants, interactions and operations than those declared in the choreography
specification. In particular, these participants and/or operations may describe
the low-level mechanisms that are used to implement the coordination require-
ments, declared in the choreography specification.

The behavior of the participant is defined using set of local variables and local
actions. The local actions of the ith participant are divided into input actions
Ii, representing the reception of message α, denoted as ←−α ; output actions Oi,
representing the emission of message α, denoted as −→α ; and internal actions Ai

τ .
A message α ∈ Mα has the form μ(x̄), where μ is the service operation, and x̄
denotes a message content.

Definition 2 (LTS). A local transition system representing the ith participant
of the implementation model is a tuple 〈V i,Si,Si

0,Ai, T i〉, where

– V i is a set of local variables;
– Si and Si

0 are the finite sets of local states and initial local states respectively;
– Ai = Ii ∪ Oi ∪ Ai

τ is a set of local actions;
– T i ⊆ Si × Φ×Ai ×Ω∗ × Si is a local transition relation.

We define a composition of local participants as follows. During the execution,
the composition participants evolve independently, exchanging messages with
other participants through a certain communication medium, represented as a
set of queues. We refer to this medium as communication model. The behav-
ior of the composition strongly depends on the structure of the communication
model: the number of queues, queue ordering, queue bounds etc. An example
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of this dependency is illustrated in Sect. 2.1, where the composition of ser-
vice implementations conforms to the specification behavior under the synchro-
nous communication model, but violates it under a more realistic asynchronous
model. Therefore, the implementation model should be correct with respect to
the choreography specification regardless to the communication model applied
for the composition representation.

In our previous work [4], we present a hierarchy of communication models and
introduce the notion of the most general communication model (MG-model). We
show that under this model any composition of LTSs exhibits more behaviors
than the composition under any other communication model. The MG-model is
defined as a structure with one unbounded and unordered queue. That is, all
the exchanged messages are stored in and consumed from this queue regardless
their ordering2. We will use this model to represent and analyse the composition
of the local transition systems.

Let N
Mα be a set of multisets of Mα, i.e. set of mappings from Mα to natural

number N. Given two elements w and w′, we write w.w′ to denote the multiset
union, if w, w′ ∈ N

Mα . Thus, the queue content is defined as a multiset w.

Definition 3 (CTS). A composition transition system representing the com-
position of n participants is a tuple Σc = 〈Vc,Sc,Sc

0 ,Ac, T c〉, where

– Vc =
⋃

i Vi is a set of all local variables;
– Sc is a set of composition states of the form 〈s̄, w〉;
– Sc

0 ⊆ Sc is a set of initial composition states with empty queue w = ε;
– Ac =

⋃
iAi is a set of actions;

– T c ⊆ Sc × Φ × Ac × Ω∗ × Sc is a composition transition relation. The
transition (〈s̄, w〉, φ, a, Ω, 〈s̄′, w′〉) ∈ T c if for some i there exists a transition
(si, φ, a, Ω, s′i) ∈ T i such that s̄′ = s̄[s′i/si] and
• if a = −→α , then w′ = w.α;
• if a =←−α , then w = α.w′;
• if a = τ , then w′ = w.

The behavior of the composition is defined analogously. Let us denote the con-
figuration of the composition as a triple γ = 〈s̄, g, w〉. The transition of CTS
(〈s̄, w〉, φ, a, Ω, 〈s̄′, w′〉) is fireable in γ only if g |= φ. The resulting configuration

is defined as 〈s̄′, upd(g, Ω), w′〉. We write γ
−→μ→ γ′, if the action a has the form

−→μ (x̄), γ
←−μ→ γ′, if the action a has the form ←−μ (x̄), and γ

τ→ γ′ otherwise.
A (possibly infinite) sequence π = γ0, a0, γ1, a1, . . . is a run of the CTS, if

γ0 ∈ Sc
0 , and for any i ≥ 0 γi

ai→ γi+1.

4 Choreography Validation

An important issue in the analysis of Web service specification is verifying that
the given composition of existing services satisfies the requirements of the spec-
2 If certain interaction constraints (e.g., synchronizability, message ordering) should

be satisfied by the composition, a corresponding communication model may be used
instead of MG-model. See [4] for the details on the analysis and implementation.
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ified global choreography protocol. This analysis has to address the following
problems. First, it has to check that the behavior exhibited by the composition
corresponds to those described in the choreography document. This problem
is referred to as conformance checking [6]. Second, it is often needed that the
participants agree on the state of the protocol as a result of its execution. In
other words, they expect to have a common knowledge on certain variables that
describe the state of the protocol. This problem is referred to as information
alignment.

4.1 Choreography Conformance

In [7] the notion of conformance between choreography and orchestration (i.e. im-
plementation specification) was introduced as a bisimulation-like relation. How-
ever, some crucial aspects are ignored in that framework. The model of the
composition, adopted in this framework, relies on the assumption that the mes-
sage exchanges are synchronous, which is often not realistic in the Web service
environments. As a consequence, it is not always possible to reveal the imple-
mentation problems like, e.g., the message losses, queue unboundedness, message
intersections and disorder.

We extend the presented approach in the following way. Given an implementa-
tion specification, we model the composition of participants in the most “liberal”
(i.e., with respect to the possible behaviors) settings, that is, under the most gen-
eral communication model. We require that the following properties hold on the
resulting composition:

– the composition specification is complete, i.e. all the messages send by any
participant should be eventually consumed by the recipient;

– the composition is bounded, that is there exists such a constant K that in
every reachable configuration of the composition the number of messages in
the queue is less than this constant: |w| ≤ K;

– the (relevant part of) observable behavior of the implementation is similar
to the behavior of the choreography specification.

More formally, we define the notion of conformance as follows. Let Mp be
a set of service operations of the choreography specification. In order to hide
irrelevant operations of the implementation, we use the operator [·]. That is,
given an action a ∈ Ac, we write [a] = μ, if a = −→μ (x̄) and μ ∈ Mp, and [a] = τ

otherwise. We write γc τ→∗γc
1 to denote that γc

1 is reachable from γc through
(zero or more) irrelevant operations. Analogously, γp τ→ ∗γp

1 means that γp
1 is

reachable from γp through (zero or more) internal actions.
The conformance relation requires that conversations of the implementing

composition reflects all and only the conversations of the choreography.

Definition 4 (Conformance Relation). Let γp and γc be configurations of
Σp and Σc respectively. We say that the relation R(γp, γc) is a conformance
relation if for any transition label a

– if γp a→ γp
1 ∧ a = μ, then γc τ→∗γc

2 ∧ γc
2

−→μ→ γc
1 ∧ R(γp

1 , γc
1);
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– if γc a→ γc
1 ∧ [a] = μ, then γp τ→∗γp

2 ∧ γp
2

μ→ γp
1 ∧ R(γc

1, γ
p
1 );

– if γp a→ γp
1 ∧ a = τ , then γc τ→∗γc

1 ∧ R(γp
1 , γc

1);
– if γc a→ γc

1 ∧ [a] = τ , then γp τ→∗γp
1 ∧ R(γc

1, γ
p
1 ).

We write Σp ≈ Σc if there exists a conformance relation R, such that any initial
configuration of Σp conforms to some initial configuration of Σc, and vice versa.

Definition 5 (Asynchronous Choreography Conformance). An imple-
menting composition Σc is asynchronously conformant to the choreography Σp,
if Σc is complete, bounded, and Σc ≈ Σp.

4.2 Information Alignment

An interesting property being modelled in the choreography specifications is
the information alignment, i.e. the ability to control that the participating roles
agree on the outcome of the interactions or even of the execution of the whole
protocol [3]. In particular, in the scenario in Fig. 2(a) it is required that both
the buyer and the seller have a have a common view on the offer value. That
is, the partners may need to have a common knowledge on the information they
exchange (interaction based alignment). As a result of such an alignment the
participants act on the basis of their shared knowledge. In other cases, like those
illustrated in Fig. 3(a), this property expresses a requirement that the partici-
pant will agree on the way the choreography ended, regardless the alignment of
intermediate interactions (choreography coordination). In either case, the imple-
menting system should ensure that the specified requirements are satisfied (i.e.,
the interaction complete and the partner have the same information understand-
ing, or choreography termination state is agreed).

Following the above patterns, we distinguish two kinds of properties to be
modelled and validated on the implementing composition. The properties of
the first group are used to check the proper interaction completion and the
corresponding data alignment. The property of the second group are used to
verify that the participants have a common view on the termination state.

More formally, let a = (rs, rr, μ, v̄s, v̄r) ∈ AO be an interaction action whose
alignment has to be ensured. Let also φ be an expression over the variables of the
partners that is expected to evaluate to true on the completion of the interaction.
The interaction alignment rule requires that any emitted message should be
eventually consumed, a new message can not be emitted until the previous is
consumed, and the values of the variables should satisfy the expression on the
interaction.

Definition 6 (Interaction Alignment Rule). An interaction alignment rule
〈(rs, rr, μ, v̄s, v̄r), φ〉 requires that for any run π = γ0, a0, γ1, a1, . . . of Σc, if

γi

−→μ→ γi+1 for some i ≥ 0, then

– there exists j > i, such that γj

←−μ→ γj+1, and
– for any i < k < j ak �= −→μ , and
– γj+1 |= φ.
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Consider an example choreography and implementation in Fig. 2(a) and 2(b)
respectively. The interaction alignment rule for the refresh interaction has the
form 〈(s , b, refresh, sOffer , bOffer), (sOffer = bOffer)〉. It is easy to see that the
rule is violated by the implementation.

The coordination alignment rule requires that the participants agree on the
information in a termination state of the choreography. Given some termination
state s̄, let φs̄ = φ1

s̄ ∧ · · · ∧ φn
s̄ be an expression over the implementation that

evaluates to true if and only if the participants are in the required state. Let E
be a set of the all the expressions of the terminating states: E = {φs̄}.

Definition 7 (Coordination Alignment Rule). A coordination alignment
rule E = {φs̄} requires that

– for each γc of Σc, with out(γc) = ∅, there exists φs̄ ∈ E, such that γc |= φs̄;
– for each φs̄ ∈ E, there exists γc of Σc, such that out(γc) = ∅ and γc |= φs̄.

The coordination requires that each termination state of the implementation
should correspond to some termination state of the choreography, and every
termination state of the choreography is also a termination state of the imple-
mentation.

For the protocol represented in Fig. 3(a) the coordination alignment rule is
formulated as follows:

E =
{

(b.state = done ∧ s.state = done ∧ c.state = ok ∧ h.state = done),
(b.state = fail ∧ s.state = fail ∧ c.state = fail ∧ h.state = init)

}

That is, either all the partners are in their successful states, or the buyer the
seller and the CCA services fail, and the shipper is not initiated.

4.3 Choreography Analysis

The formal model represented above allows for the definition of systems with
potentially infinite number of reachable configurations. This makes the applica-
tion of formal analysis techniques very complex, if at all possible. In order to be
able to perform the choreography conformance validation, the model should be
made finite. For these purposes, we recall the approach of [8,9], and for the lack
of space we only sketch the formalization here.

Symbolic Representation. We represent the composition models using an
abstraction-based approach [8,9]. In this model the variables and their valuations
are given in terms of valuations of the set of propositions. These propositions may
express certain facts about the composition states, variables, relations between
them, function values, etc. More formally, we allow the proposition to have a
form of expression: p ≡ (t1 = t2) | ¬p | p1 ∧ p2. We will refer to the set of
propositions as PA.

We define an abstract model corresponding to the concrete one, based on the
set PA. An abstract valuation gA is simply a mapping from PA to {true, false}.
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Since the set PA is finite, a set of concrete valuations corresponds to an abstract
valuation gA: {g | for each p ∈ PA, g |= p iff gA(p) = true}. We denote such
set as a interpretation of the abstract valuation, written as I(gA).

According to the definition3, the transition (s̄, φ, a, Ω, s̄′) of Σp is fireable in a
(concrete) configuration γ = 〈s̄, g〉, if the valuation satisfies the transition guard.
The resulting valuation is defined as upd(g, Ω). Given an abstract configuration
γA = 〈s̄, gA〉, the transition is fireable in γA, if gA |= φ. Analogously, the result of
the transition is some valuation updA(gA, Ω), such that there exists g ∈ I(gA),
for which upd(γ, Ω) ∈ I(updA(γA, Ω)). The run of the abstract model as defined
in the same way. It is easy to see that the abstract model is finite.

Symbolic Analysis Techniques. As we discussed above, the analysis of the
correspondence between the choreography and the implementation requires that
the following three properties are satisfied: the implementation is complete (i.e.,
all the messages are received), bounded, and the asynchronous conformance rela-
tion is satisfied. The algorithm that allows for the boundedness and completeness
analysis of the above implementation model is presented in [4]. The verification
of the asynchronous conformance relation between Σp and Σc models may be
done symbolically, based on the abstractions for these models. The symbolic al-
gorithm, adopted for the conformance checking analysis is presented in [10]. In
particular, it is shown how the equivalence relation may be represented symbol-
ically, and verified using BDD-based model checking algorithm.

Symbolic model checking algorithms may be used also for the verification of
the alignment rules. We exploit the Computational Tree Logic (CTL, [11]) for
this purposes. Given an alignment rule, a corresponding CTL formula φR is
constructed, which holds when the implementation satisfies the rule.

More formally, let IR = 〈(rs, rr, μ, v̄s, v̄r), eIR〉 be an interaction alignment
rule. Let φ−→μ (respectively, φ←−μ ) be an expression, which is true if and only if the
message μ is emitted (resp. received). A CTL formula φIR is defined as follows:

φIR = AG(φ−→μ ⇒ ((AF(φ←−μ ∧ φIR)) ∧ A(¬φ−→μ Uφ←−μ ))) .

In other words, from each state, where the aligned interaction is started, (i) the
state, where the interaction is complete, should be always reachable, (ii) the
information alignment condition should be satisfied, and (iii) there should not
be any intermediate emissions.

Analogously, let CR = {φs̄} be a coordination alignment rule. The corre-
sponding CTL formula is defined as follows:

φCR = (AF
∨

s̄

AGφs̄) ∧ (
∧

s̄

EF AGφs̄) .

The formula states that some of the allowed termination states is always reach-
able, and each of them may be reached by some execution of the composition.

3 The abstraction of CTS may be defined analogously.
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5 Conclusions and Related Work

In this paper we presented a formal framework for the verification of the con-
formance between the choreography specification and the composition of service
implementations. The formalism allows for modelling the data- and control-flow
of the Web service compositions, defined as a global protocol and as a set of
interacting local services. The key feature of the framework is the asynchro-
nous message exchange, where the messages may be reordered and stored in
unbounded queues. We exploit this feature for the definition of asynchronous
choreography conformance, thus allowing for more accurate analysis of a wider
class of compositions. We also formalize advanced declarative synchronization
requirements exploited by WS-CDL, such as the interaction alignment and the
coordination alignment rules. Finally, we presented symbolic reasoning tech-
niques for model checking choreography specifications against the implementing
compositions.

The work close to ours is presented in [7]. The choreography and the or-
chestration languages are formalized, and the notion of conformance between
the specifications is presented. Here we extends the model of [7] in several
directions. First, our approach allows for representation and management of
data. Second, we adopt asynchronous communication model, while the inter-
actions are defined in [7] as synchronous. Third, we also aim at addressing the
information alignment problem, thus covering more essential choreography
properties.

The problem of verification of the global protocol specification against the
implementing composition is also discussed in [12,13,14]. In [12] the notion of
conformance is defined by means of automata and is restricted only to composi-
tions of two services. In [13] the choreography specifications are used to represent
the service obligations rules, and then are verified against the implementations
defined as compositions of interacting BPEL processes. Again, the analysis does
not consider the data-flow of the composition, and relies on the synchronous com-
munication model, which is not realistic for a wide class of composition scenarios.
The work of [14] concentrates on checking that the choreography specification is
respected by the implementing services at run time. The formalisation is given
in terms of Petri Nets.

The formalization of the Web service choreography models are also presented
in [15,16,17]. In particular, in [17] the global and the local (end-point) calculi are
introduces to describe the choreography and the behavior of compositions of local
implementations. The work discusses the relation between the two paradigms,
and presents the potential problems related to the asynchronous exchanges and
message reorderings. The problem of synchronous versus asynchronous interac-
tions in global models is also discussed in [18], where the notion of the protocol
synchronizability is presented together with the sufficient conditions. The re-
sults of [4] extend this approach and provide a way to determine an appropriate
level of asynchronism and a suitable communication model for the given com-
position.
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