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Abstract. In this paper we present an approach for modelling and an-
alyzing time-related properties of Web service compositions defined as a
set of BPEL4WS processes. We introduce a formalism, called Web Ser-
vice Timed State Transition Systems (WSTTS), to capture the timed
behavior of the composite web services. We also exploit an interval tem-
poral logic to express complex timed assumptions and requirements on
the system’s behavior. Building on this formalization, we provide tools
and techniques for model checking BPEL4AWS compositions against time-
related requirements. We perform a preliminary experimental evaluation
of our approach and tools with the help of the e-Government case study.

1 Introduction

Web services provide the basis for the development and execution of business
processes that are distributed over the network and available via standard inter-
faces and protocols [1]. Service composition [2] is one of the most promising ideas
underlying Web services: new functionalities can be defined and implemented
by combining and interacting with pre-existing services. Different standards and
languages have been proposed to develop Web service compositions. Business
Process Execution Language for Web Services (BPEL for short) [3] is one of
the emerging standards for describing a key aspect for the composition of Web
services: the behavior of the service.

BPEL opens up the possibility of applying a range of formal techniques to
the verification of the behavior of Web services, and different approaches have
been defined for verifying BPEL [4-7, 13]. We are interested in particular in those
techniques that are applied to the verification of BPEL compositions: in this case,
we have to verify the behaviors generated by the interactions of a set of BPEL
processes, each specifying the workflow and the protocol of one of the services
participating to the composition. Correctness of these compositions requires not
only the satisfaction of qualitative requirements (e.g. deadlock freeness), but also
of quantitative properties, such as time, performance, and resource consumption.



Time-related properties are particularly relevant in this setting. Indeed, in
many scenarios we expect that a composition satisfies some global timing con-
straints, which can be satisfied only if all the participating services are com-
mitted to respect their own local timing constraints. Consider for instance an
e-government scenario, where the distributed business process requires the com-
position of information systems and functionalities provided by different de-
partments or organizations. The composite service can comply with the timing
commitments w.r.t. the state regulations (e.g., the duration of document analy-
sis phase) only if they are consistent with the time required by the participants
to carry out their part of the process.

In this paper we present an approach for modelling and analyzing time prop-
erties of WS compositions defined by a set of BPEL processes. We want to stress
the fact that the time properties we want to model and analyze are those that
are critical from the business logic point, i.e., they refer to the time required by
the participants to carry out their tasks and take their decisions, and to the as-
sumptions and constraints on these times that guarantee a successful execution
of the composition scenario. In e-government scenarios, their times are measured
in hours and in days. The “technical” times, which are required, for instance, by
the communications among BPEL processes and by the BPEL engines to man-
age incoming and outgoing message, are orders of magnitude smaller (seconds if
not milliseconds) and can be neglected in the scenarios above.

This work is based on previous results on the untimed verification of BPEL
compositions [8]. In that framework, implemented as a part of the Astro project
toolkit (http://www.astroproject.org), the BPEL processes are encoded as
State Transitions Systems (STS), and then their composition is verified using
NuSMYV model checker. In this paper, we define the formalism of Web Services
Timed Transition Systems (WSTTS), extending STS to allow for modelling the
timed behavior of a composition. WSTTS are closely related to timed automata
but incorporate design decisions and features consistent with the Web service
composition. We also demonstrate how the duration calculus logic can be ap-
plied for the modelling of complex timed requirements in the domain, and adapt
Quantified Discrete-time Duration Calculus (QDDC) [9] to perform a verifica-
tion of WSTTS models under these requirements. The verification is carried out
by first reducing the WSTTS models and the QDDC formulae to finite state au-
tomata [9], and then by encoding these automata in the language of the NuSMV
[10] model checker. The latter is then invoked to verify the desired property.

The paper is structured as follows. In Sect. 2 we introduce the e-government
case study that describes the problem of analysis of time-related properties. The
formalism of WSTTS model, the representation of time-related properties, and
DC logic are discussed in Sect. 3. Section 4 discusses the implementation of the
analysis approach and experimental results, and Sect. 5 presents conclusions.

2 Case Study: e-Government Application

We illustrate our approach with the real e-government application. The goal of
the application is to provide a service that manages user requests to open sites
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Fig. 1. Waste management application processes

for the disposal of dangerous waste. According to the existing Italian laws, such
a request involves the interaction of different offices of the public administration,
namely a Citizen Service, a Waste Management Office (WMO), a Secretary Service,
a Procedure Manager, a Technical Committee, and a Political Board. In this ap-
plication, the whole procedure is implemented as a composition of Web services
that serve as interfaces to the processes of the above offices. We model the com-
position using BPEL specifications to describe partners interactions. The high-
level choreography model of the request management procedure is presented in
Fig. 1. The procedure describes different phases of the application management
where the request is registered, the documentation is evaluated and collected,
tha application is analyzed regarding the ecological impact of the site, the public
conference is scheduled and organized, and final decision is provided.

Apart from the functional requirements, the execution of the process in the
choreography should respect a set of timing requirements and constraints, dic-
tated by Italian laws or by the agreement among the involved parties. These
requirements (callouts in Fig. 1) specify, for example, that the period of time be-
tween the application registration and the notification of the Procedure Manager
should not exceed 30 days, or that the participants can change the date within
5 days after the preliminary call.

The behavior of the composition and the possibility to satisfy these require-
ments depend on the time needed for the execution of the activities the involved
parties are responsible for. The critical parameters here refer to the duration of



internal activities of the participants, and not to the communication time, which
can be neglected.

The analysis of time-related aspects of the compositions requires explicit
representation of timeouts, operation durations, and even complex properties
expressing various timing requirements. While timeouts can be represented in
BPEL, durations and timing requirements can not, and require specific way to be
modelled. In our framework, we assume that the answer times are negligible by
default, and that activities that have a non-negligible duration are annotated in
the BPEL specification with an extra “duration” attribute. In Fig. 1 an excerpt
of the annotated BPEL is represented. Here a BPEL event handler “date modi-
fication” is used to model 5-days bound for the conference data change. That is,
the onAlarm activity is triggered if the user does not invoke the “modifyDate”
operation within 5 days. On the contrary, the internal activity “verify reviews”
is equipped with a duration annotation to express that certain time may be used
for the reviews analysis. Timing requirements, however, can not be represented
with durations associated to the activities and require more powerful notations.
Consider, for instance, the requirement that the interval from the registration to
the conference call should not exceed 30 days, and it is followed by the interval
of length of at least 10 days, ending with the conference.

In order to be able to handle such aspects, it is necessary to provide model
of the BPEL process behavior that allows for an explicit representation of time.
Moreover, it is necessary to exploit and adapt the existing analysis techniques for
reasoning about time to our problem domain. In the following sections we demon-
strate how these issues can be addressed with the help of the WSTTS model,
the duration annotations and duration calculus for complex time requirements.

3 Web Service Timed Transition System Model

In order to model the behavior of the BPEL process compositions, we propose
the Web Service Timed Transition System (WSTTS) model, which adopts the
formalism of timed automata for capturing the aspects specific to the Web service
domain. In this formalism, the fact that the operation takes certain amount of
time is represented by time increment in the state, followed by the immediate
execution of the operation. In order to guarantee that the transition will take
place at the right moment of time, the states and transitions of timed automata
are annotated with the invariants and guards of the special clock variables.
Intuitively, WSTTS is a finite-state machine equipped with set of clock vari-
ables®. The values of these clock variables increase with the passing of time. A
Web service composition thus is represented as a network of several such au-
tomata, where all clocks progress synchronously. In this model, the states of the
WSTTS are equipped with the state invariants that express simple conditions
over clocks and should be true when the system is in the state. Analogously,
transitions are annotated with the set of guards that represent simple conditions

3 Tt is also equipped with the set of non-timed variables of finite domains. For the sake
of simplicity, we omit them in the formalism.



over clocks, and resets that are used to reset values of certain clocks to zero.
The semantic of WSTTS is defined as a transition system, where either the time
passes or a transition from one state to another immediately takes place.

Let X be a set of clocks. The constraints on the clock values ¢(X) are of the
form true | x ~c | ¢1 A g, where ~€ {<, <, =,#,>, >}, x € X, and c € T,
a domain of time values.

Definition 1 (WSTTS). WSTTS is a tuple (S, so, A, Tr, Inv), where

— S is the set of states and sg is the initial state;

— A is a set of input Tm, output !'m or internal T actions;

—Tr CSxAx®x2% xS is the set of transitions with an action, a guard,
and a set of clocks to be reset;

— Inv: S — &(X) assigns invariants to the states.

In the definition, the effect of the transition from the state s to s’ is to perform
a communication or an internal action a € A, and to reset set of timers to zero.
The transition is possible only if the guard evaluates to true in the source state.

A clock valuation is a function v : X — T from the set of clocks to the
domain of time values. Let T denote a set of clock valuations. Let ug(z) = 0
for all z € X. We write u € Inv(s) to denote that u satisfies Inv(s).

Definition 2 (Semantics of WSTTS). Let (V, S, sg, A, Tr, Inv) be a WSTTS.
The semantics is defined as a labelled transition system (I",7yy,—), where I' C
S x Te is a configuration, v = (sg,uo) s an initial configuration, and —C
I' x {AUtick} x I' is a transition relation such that:

— (s,u) tick (s,u+d), if (u+d) € Inv(s), and
— (s,u) =% (s',u'), if exists a transition (s,a,¢,Y,s') € Tr, such that u € ¢,
w =ulY — 0], and v’ € Inv(s).

We define a Web service composition as a WSTTS network. The WSTTS
network consists of n WSTTS P; over common set of clocks X. The semantics
of the network is given in terms of global timed transition system (GTTS). We
use § = (s1,...,Sn) to denote a state vector, 5o to denote an initial state vector,
and 3[s;/s}] to denote a state vector, where the element s; is replaced by s..

Definition 3 (GTTS). Let (X, Py || --- || Pn) be a WSTTS network. Global
timed transition system has the form (I',vyo, —), where I' C (S1 x---x S,) x T¢,
Yo = ((S01y--+580n),u0), and —C I' x {A U tick} x I' is a global transition

relation:

— (5,u) K (5,u+d), if (u+d) € NiTnvi(s;);

— (5,u) — (5[s;/sl],u), if there ewists (s;,7,g,Y,s:) € Tr;, s.t. u € g, v/ =
u[Y +— 0], and v’ € NiInv;(s;);

- (5,u) = (8[si/si,55/85],u"), if there exists (si, Tm, gi, Yi, s;) € T'ri and
(s5,!m,g;,Y;,8%) € Try, st. u € gi Ngj, v = u[Y;UY; — 0], and v’ €
NiInv(s;).

In other words, the transition of GTTS is either a time passing transition, an
internal transition of a particular WSTTS, or a shared communication action of
two WSTTS.
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Fig. 2. Time-related constructs as WSTTS

Mapping BPEL constructs to WSTTS. We now give the definition of
BPEL constructs in terms of the WSTTS formalism (see Fig. 2). We remark
that, by default, all the activities of the underlying BPEL process are modelled
as instantaneous. The fact that a particular activity may have certain duration is
expressed explicitly through duration annotations that allow to specify bounds
of the activity duration?.

In this way all internal and message output activities are modelled as instant.
Such a transition is semantically equivalent to adding an extra clock x to the
source state of the transition, and the invariant of the state is x<=0. Hence, time
can not pass in the source state of the instant transition. Input activities do
not require such an addition, since they are blocked until corresponding output
takes place, and therefore time can pass.

BPEL also defines activities that explicitly reference time. In particular, the
activity onAlarm is used to represent timeouts and is modelled as an event
handler. This activity has two forms: in the first it is fired when certain time
passes (in Fig. 1 it is used in event handler to set up a 5 days timeout for the
date modification); and in the second it is fired if the current absolute time has
the specified value®. We model this absolute time using a special clock added to
the WSTTS network model, namely global_timer. It is set to a certain value in
the beginning of the execution, and is never reset later.

As we mentioned above, it is possible to specify certain duration for the activ-
ity. In this case the activity is explicitly annotated with the duration constraints
(e.g. duration of activity “verify reviews” in Fig. 1). Such constraints are con-
junctions of the clauses of the form dur(A) ~ ¢, where ~€ {<,>, <, > =}. In
the WSTTS formalism this annotation is semantically equal to the sequence of
two transitions. First transition is instant and it resets the clock x. The second
transition and the intermediate state have the guards that evaluate to true, if
the value of the clock x satisfies the duration constraints.

Specifying Time Requirements. While the constructs described above en-
able the explicit coding of simple time-related properties of WS compositions,
we often encounter complex timing requirements which are hard to model with
above constructs. Such requirements may express the time intervals between
events (or a sequences of events), time bounds on some condition to hold or
even complex logical combinations on them.

4 We stress once more that our goal is to analyze the time properties that are crit-
ical for the business logic, and neglect the smaller “technical” times due, e.g. the
communications.

5 Another BPEL activity that deals with time is the activity wait. This activity is
blocked for certain time period and is translated into WSTTS analogously



In order to express such properties we exploit a subset of duration calculus
(DC) [11]. Tt allows us to express properties of finite sequences of behaviors and
to measure the duration of a given behavioral fragment.

Let P range over propositional variables, D, Dy, Dy over DC formulae, ¢ over
natural number constants, and ~€ {<,<,=,>,> }. The DC formula syntax is:

D5:[PWO | [[P] | D1 "Dy | Dy A Dy | =D | len ~ ¢

DC formulas are evaluated over finite behaviors, i.e., over finite sequences of
valuations of propositional variables VAL(Pvar)*.
The constructs above have the following intuitive meaning:

— [P]° holds for the behavior consisting of a single state satisfying P;

[[P] requires P to hold at all but the last states of the behavior;

— Dy 7 Dy splits the behavior into two subintervals, such that D holds for the
first subinterval, and D5 holds for the second one;

D1 A D5 requires both formulas to hold, while =D requires that D is not
satisfied on the behavior;

len ~ c relates the duration of the interval with the constant value c.

Additionally, we write OD = true — D “true, if D holds for some subinterval
of the behavior; OD = —=<{$=D denotes, that D holds for all subintervals.

The requirement that the interval from the protocol registration to the con-
ference call should not exceed 30 days, and that from the call to the conference
at least 10 days should pass, can be expressed with the following formula:

O([registration]® ~true ~[conference]® — (len < 30) " [call]’ ~(len > 10))

The formula says that every interval of the behavior that starts with the regis-
tration and ends with the conference consists of two subintervals with the call
in between, such that the first lasts at most 30, and the second at least 10 days.

4 Implementation of Timed Analysis

We have implemented the ideas presented above as a prototype tool that allows
for the timed analysis of Web service compositions. The tool inputs the initial
composition of BPEL processes, enriched with the duration constructs, together
with complex properties and translates it into the specification suitable for the
formal techniques, such as model checking. In this implementation we adopt
discrete model of time, and use (subset of) Quantified Discrete-time Duration
Calculus [9] to express complex time requirements under this model. Under
certain conditions the dense model of time may be analogously implemented.
The tool performs the transformation of the composition into the finite state
automata representation and reflect the operational semantics of the global TTS
given above. The clock variables are represented as global integer variable that
synchronously increment their values when the time elapse transition happens.
A special tick variable is used to denote this event. The results of [12] ensure that



for discrete time model the clock variables may be bounded without affecting
the behavior of the system and therefore the resulting specification is finite.

The complex timing requirements are used in the composition analysis in the
following ways. First, the composition specification M can be directly verified
against a property represented with the QDDC formula D. For this purposes we
construct an finite state automaton A that recognizes all and only the behaviors
that satisfy the formula =D ([9]). If the synchronous (i.e. lock-step) product
(M x A(—D)) of the specification and the automaton for the property negation
is not empty, then the behavior of the composition violates the property D.
Second, the complex time properties may express assumptions or constraints on
the system behavior. In this case the tool builds a product (M x (A(D1) X -+ x
A(Dy,))) of the specification and the properties automata. This product restricts
the specification model to behaviors that satisfies all the specified constraints.
One can use this product for further analysis of the composition (e.g. for CTL
or LTL model checking).

In order to illustrate the approach represented in the paper we have con-
ducted a set of experiments on the analysis of the presented case study in dif-
ferent settings. In particular, in one set of experiments we assigned different
bounds on the activity durations, and checked the composition for the dead-
locks. Another set of experiments dealt with complex requirements expressing
the bounds on intervals between various events (e.g. between application reg-
istration and conference call). The requirements were verified directly, or were
used to model behavioral constraints. We have used the NuSMV model checker
for verifying the corresponding finite state automata model. In the experiments
the state space ranges from 10'! to 2 x 10'2 states, and the verification time
ranges from 0.6 to 15 seconds. Whenever the property is violated, the model
checker generates a counterexample that represents an execution demonstrating
the violation (e.g. a trace where both registration and conference call happened,
but the time between these events was greater then the required bound).

5 Conclusions

We presented an approach for modelling and analyzing of time-related prop-
erties on Web service compositions defined by a set of BPEL processes. This
approach is based on the formal model, Web Service Timed Transition Sys-
tem, that allows to take into account timed behavior of such compositions. We
demonstrated how BPEL time-related constructs can be expressed in this for-
malism and presented a way to express time-related requirements using both
simple modelling constructs or complex DC formulas particulary suitable for
expressing such properties. The presented approach enables verification of WS
compositions using model checking techniques.

The problem of the WS compositions analysis, in particular of BPEL processes,
is investigated in the works of [4-7, 13]. While providing facilities for the verifica-
tion of processes or their compositions, these approaches do not take time-related
properties of composition behaviors into account. The work that is closer to ours



is presented in [14]. In this work, a formal model of BPEL processes, u-BPEL,
is presented that allows for mapping to a network of timed automata. However,
[14] does not provide a way to explicitly specify the transition or state dura-
tion bounds, or complex time-related assumptions and requirements as those
we model with DC formulas. In [15] temporal abstractions are exploited for the
compatibility and replaceability analysis of Web service protocol. In that model
one can specify when certain transitions must or may happen, similarly to what
we achieve with our duration annotations. The work does not address the prob-
lem of the verification of these time properties and the abstractions are simple
with respect to the set of properties we can express in our approach.

There are several directions for further research. In particular, we are working
on the optimizations of the translations from BPEL to NuSMYV code and appli-
cations of better analysis techniques that give a possibility to drastically improve
the verification performance. Another line of research is to replace NuSMV with
a model checker, such as UPPAAL, that can verify timed properties without
requiring the generation of FSA.
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