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Abstract

One of the fundamental ideas of Web Services and Ser-
vice Oriented Architecture is the possibility to develop new
applications by composing existing services that are avail-
able on the Web. Several approaches have been proposed
to tackle the problem of Web Service Composition, but little
effort has been devoted so far to the problem of modeling
the requirements of the composition. However, it is clear
that the possibility to express requirements specifying com-
plex interactions patterns among the component services is
an essential step to cope with a wide range of composition
problems. In this paper we present a new model which ad-
dresses one of the key aspects of composition requirements,
namely the data flow among the component services. We de-
velop graphical notations and a formal theory for the new
model and we integrate it within an existing automated com-
position framework.

1 Introduction

Web services are platform-independent applications that
export a description of their functionalities and are accessi-
ble using standard network technologies. Web services are
able to perform a wide spectrum of activities, from simple
receive-response protocols to complicated business work-
flows, and provide the basis for the development and ex-
ecution of business processes that are distributed over the
network. One of the fundamental ideas of Web services is
the possibility to develop new applications by composing
existing services that are available on the Web. The manual
development of the new composite service is often a diffi-
cult and error-prone task, because human domain experts
have to take care of all the contingencies that can happen
during the service execution process. The ability to sup-
port the composition of Web services with automated and
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semi-automated tools is an essential step to decrease time
and costs in the development, integration, and maintenance
of complex services.

Several methods have been proposed to cope with the au-
tomated composition problem (see e.g. [10, 9, 11, 13, 7, 2]).
In all those methods, the existing component services are
used to define a domain to be controlled, composition re-
quirements specify the desired behaviors that should be en-
forced on the domain, and the composition task corresponds
to synthesize a controller for the domain that realized the
desired behavior. It is widely recognized that, in general,
automated synthesis is a hard problem, both in theory and in
practice (see, e.g. [15]). In the case of Web service compo-
sition, however, automated synthesis turns out to be feasible
not only in principle, but also in practice on realistic do-
mains of significant complexity. Indeed, in this setting the
synthesized controller has “simply” to act as an orchestrator
which controls and directs the execution of the existing ser-
vices, but delegates to the services the other computational
tasks.

One of the key aspects of Web service composition is
how to derive and model composition requirements. It is
clear that, in order to cope with a wide range of real com-
position problems, we need a way to express complex re-
quirements on the exchanged data and on the executions
of the component services. Moreover, to make the auto-
mated composition an effective and practical task, the re-
quirements specification should be easy to write and to un-
derstand for the analyst. Surprisingly, very little effort has
been devoted in the literature to address this problem.

In this paper we present a new model which addresses
one of the key aspects of composition requirements, namely
the data flow among the component services. We propose
to specify the requirements on the data flow through a set
of constraints that define the valid routings and manipula-
tions of messages that the orchestrator can perform. These
constraints can be described in a graphical way, as a data
net, i.e., as a graph where the input/output ports of the ex-
isting services are modeled as nodes, the paths in the graph
define the possible routes of the messages, and the arcs de-



fine basic manipulations of these messages performed by
the orchestrator. In the paper, we develop the formal defini-
tion and the graphical notations of data nets. Moreover, we
show how to integrate data flow requirements expressed as
data nets within an existing automated composition frame-
work [13, 14, 12]. Finally, we show that the proposed ap-
proach can handle realistic composition problems of signif-
icant complexity.

The rest of the document is organized as follows. In Sec-
tion 2 we describe the problem of Web service composition
and we illustrate the necessity to define complex data flow
requirements. In Section 3 we introduce data nets and we
formally define their semantics by describing the require-
ments that a data net defines on the possible behaviors of a
Web service composition. In Section 4 we discuss how data
nets can be integrated in the automated composition frame-
work proposed in [13, 14, 12]. Finally, Section 5 concludes
the paper with related work and final remarks.

2 Web Service Composition: A Scenario

By automated composition of Web services we mean the
generation of a new composite service that interacts with a
set of existing component services in order to satisfy given
composition requirements. More specifically, we will as-
sume that component services are described as BPEL4WS
processes.1 Given the descriptions of the component pro-
cesses and the composition requirements, we automatically
generate a new BPEL4WS process implementing the re-
quired composition.

In this section we illustrate on a case study the problem
of the automated composition of Web services. We will fo-
cus in particular on the problem of specifying the require-
ments of such a composition.

Example 1 (Virtual Travel Agency) Our reference exam-
ple consists in providing a virtual travel agency service, say
the VTA service, which offers holiday packages to potential
customers, by combining three separate existing services: a
flight booking service Flight, a hotel booking service Hotel,
and a service that provides maps AllMaps. The idea is that
of combining these three services so that the customer may
directly interact with the composed service VTA to organize
and possibly book his holiday package.

In the following, we describe informally the three avail-
able services, whose interaction protocols are depicted in

1BPEL4WS (Business Process Execution Language for Web Services)
[1] is an industrial language for the specification and execution of business
processes made available thorough Web services. In this paper we assume
that component and composite services are expressed in BPEL4WS. How-
ever, the described approach does not depend on the specific aspects of the
BPEL4WS language. The paper should be understandable also for readers
who are not familiar with BPEL4WS.

Figure 12. Hotel accepts requests for providing information
on available hotels for a given date and a given location. If
there are hotels available, it chooses a particular hotel and
return an offer with a cost and other hotel information. This
offer can be accepted or refused by the external service that
has invoked the Hotel. In case of refusal, the requester can
either request an offer for a different hotel, or terminate
the interaction with the Hotel. The Flight service receives
requests for booking flights for a given date and location.
If there are available flights, it sends an offer with a cost
and a flight schedule. The client can either accept or refuse
the offer. If he decides to accept, the Flight will book the
flight and provide additional information such as an elec-
tronic ticket. The AllMaps service receives requests with
two locations and provides a digital map depicting distance
information.

Intuitively, the VTA service should try to satisfy a given
customer request by providing information on available
flights and hotels (e.g., holiday cost, flight schedule, hotel
description and a map showing distance from the airport)
and book the holiday according to customer final decision.
Figure 2 describes a possible protocol that the VTA could
expose to the customer. According to it, the customer sends
a request for an holiday, then, if there is an available flight,
it receives a flight offer. If the customer agrees on the flight
schedule and cost and there is an available hotel, he re-
ceives an hotel offer consisting of the hotel cost, the dis-
tance of the hotel from the airport and other information
about the hotel. The customer can either decide to accept
the offer, or to ask for a different hotel offer, or to termi-
nate the interaction with the VTA. If he decides to accept,
he receives the booking confirmation with the overall holi-
day cost and other information about the chosen hotel and
flight.

Given the description of the component services and of
the customer interface, the next step towards the definition
of the automated composition domain is the formal speci-
fication of the composition requirements. As we will see
from the examples presented in the rest of this section, even
for simple case studies we need a way to express require-
ments that define complex conditions, both for what con-
cerns the control flow and for the data exchanged among
the component services.

Example 2 (Control-flow requirements) The VTA ser-
vice main goal is to “sell holiday packages”. This means
we want the VTA to reach a situation where the customer
has accepted the offer and a flight and a hotel have been
booked. However, it may be the case that there are no avail-
able flights (or no available hotels) satisfying the customer

2In the figure, labels of input transitions start with a “?”, labels of output
transitions start with a ”!”, other transitions correspond to internal opera-
tions performed by the services.
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Figure 1. The Virtual Travel Agency Component Services
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Figure 2. The VTA Customer Interface

request, or that the customer doesn’t like the flight or the
hotel offer and thus cancels the booking. We cannot avoid
these situations, therefore we cannot ask the composite ser-
vice to guarantee this requirement. In case this requirement
cannot be satisfied, we do not want the VTA to book a flight
(nor a hotel) without being sure that our customer accepted
the offer, as well as we do not want displeased customers
that have booked holidays for which there are no available
flights or hotels. Thus, our global termination requirement
would be something like: do whatever is possible to “sell
holiday packages” and if something goes wrong guarantee
that there are “no single commitments”.

This termination requirement is only a partial specifica-
tion of the constraints that the composition should satisfy.
Indeed, we need to specify also complex requirements on
the data flow.

Example 3 (Data-flow requirements) In order to provide
consistent information, the VTA service needs to exchange
data with the components and its customer in an appropri-
ate way. For instance, when invoking the Flight service,
the information about the location and date of the flight
must be the same ones that the VTA received in the cus-
tomer request; similarly, the information sent to the cus-
tomer about the distance between the proposed hotel and
the airport must be those obtained from the last interaction
with the AllMaps service; and such a service must receive
the information on the airport and hotel location according
to the last offer proposed by the Hotel service. Moreover,
the cost proposed to the customer for the holiday package
must be the sum of the hotel and flight cost plus some addi-
tional fee for the travel agency service; thus the cost offered
to the customer must be computed by means of a function
internal to the VTA service. And so on.

The example shows that, even for apparently simple
composition problems, we need a way to express complex
data flow requirements: from simple data links between in-
coming and outgoing message parts (e.g., forwarding the
information received by the customer about the location to
the Flight service), to the specification of complex data ma-
nipulation (e.g., when computing the holiday package cost),
to more subtle requirements concerning data (e.g., all the
time the VTA invokes the AllMaps service it must send the
location information of the last hotel offer received, while
the same airport location information can be used more than
once).

The research challenge we address in this paper is the
definition of a modeling language that allows to capture
data-flow composition requirements for realistic composi-
tion problems.



3 Modeling Data Flow Requirements

The aim of the data flow modeling language is to allow
for the specification of complex requirements concerning
data manipulation and exchange. In particular, data flow
requirements specify how output messages (messages sent
to component services) are obtained from input messages
(messages received from component services). This in-
cludes several important aspects: whether an input message
can be used several times or just once, how several input
messages must be combined to obtain an output message,
whether all messages received must be processed and sent,
etc..

3.1 Syntax

In the following we describe the basic elements of the
language, show how they can be composed to obtain com-
plex expressions and provide an intuitive semantics.

• Connection Node

���
���
���

���
���
���

A connection node can be external or internal. An ex-
ternal connection node is associated to an output (or
an input) external port. Intuitively, an external input
(output) node characterizes an external source (target)
of data and it is used to exchange data with the outside
world.

• Identity
It is connected to one connection node in input and
one node in output. The requirement states that data
received from the input node should be forwarded to
the output node. The graphical notation for the data-
flow identity element id(a)(b), with input node a
and output node b, is the following:

a b
!

• Operation
It is related to a function definition; it is connected to
as many input nodes as the number of function param-
eters and only to one output node corresponding to the
function result. The requirement states that, when data
is received from all the input nodes, the result of the
operation should be forwarded to the output node. The
graphical notation for the data-flow operation element
oper[f](a,b)(c) characterizing function f, with
input nodes a and b and output node c, is the follow-
ing:
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• Fork
It is connected to a node in input and to as many nodes
as necessary in output. It forwards data received on the
input node to all the output nodes. The graphical nota-
tion for the data-flow fork element fork(a)(b,c),
with input node a and output nodes b and c, is the
following:

b

c
a

• Merge
It is connected to one node in output and as many
nodes as necessary in input. It forwards data received
on some input node to the output node. It preserves
the temporal order of data arriving on input nodes (if it
receives data on two or more input nodes at the same
time, the order is nondeterministic). We represent the
data-flow merge element merge(a,b)(c), with in-
put nodes a and b and output node c as:
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c

a

• Cloner
It is connected to one node in input and one node in
output. It forwards, one or more times, data received
from the input node to the output node. The data-flow
cloner element clone(a)(b), with input node a and
output node b is represented as:

+a b

• Filter
It is connected to one node in input and one node in
output. When it receives data on the input node, it ei-
ther forwards it to the output node or discards it. We
represent the data-flow filter element filt(a)(b),
having input node a and output node b as:

a b
?

• Last
It is connected to one node in input and one node in
output. It requires that at most one data is forwarded
to the output node: the last data received on the input
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Figure 3. The data flow requirements for the Virtual Travel Agency

node. All other data that are received should be dis-
carded. The graphical notation for the data-flow last
element last(a)(b), with input node a and output
node b, is the following:

a bL

The diagram obtained by suitably composing data-flow
elements by means of connection nodes is called data net
(see Figure 3 for an example). A data net is characterized
by a set of external connection nodes associated to input
ports N I

ext, a set of external connection nodes associated
to output ports NO

ext, a set of internal connection nodes
Nint, a set of data-flow elements D (corresponding to the
basic elements described in this section) and a set of data
values V . Given a data-flow element d, we denote with
in nodes(d) the set of input connection nodes of d and with
out nodes(d) the set of output connection nodes of d.

Definition 1 (Data Net)
A data net D is a tuple 〈N I

ext, N
O
ext, Nint, D, V 〉 where:

• for each n ∈ N I
ext there exists a unique data-flow ele-

ment d ∈ D s.t. n ∈ in nodes(d);

• for each n ∈ NO
ext there exists a unique data-flow ele-

ment d ∈ D s.t. n ∈ out nodes(d);

• for each n ∈ Nint there exists a unique data-flow
element d1 ∈ D s.t. n ∈ in nodes(d1) and there

exists a unique data-flow element d2 ∈ D s.t. n ∈
out nodes(d2);

• for each d ∈ D, in nodes(d) ⊆ N I
ext ∪ Nint and

out nodes(d) ⊆ NO
ext ∪Nint.

Notice that it is possible to associate a type to each con-
nection node in the network. Indeed, external nodes inherit
the types from the corresponding BPEL4WS ports, and the
types of internal nodes can be deduced from the structure
of the data net. We do not consider this aspect to make the
formalization more understandable; completing the model
to handle typed connection nodes is straightforward.

A possible specification of the data net for the Virtual
Travel Agency example is presented in Figure 3, which we
will (partially) explain in the following example.

Example 4 When the VTA receives a request from the
Customer, it must forward the date information to the
Flight and the loc information both to the Flight and to the
Hotel.

To obtain the cost to be sent in the offer to the Cus-
tomer, the VTA must apply its internal function prep cost
on the cost received in the offer from the Flight and on the
cost information in the last offer received from the Hotel.

The VTA must obtain the date information that it sends
in the request to the Hotel by computing its internal func-
tion get date on the schedule received in the offer of the
Flight. The schedule received in the offer of the Flight is
also forwarded to the client, as part of the f offer message.
Finally, the VTA exploits the internal function get airport



on the flight schedule to obtain the from loc information
to be sent to the AllMaps; the VTA can use this same infor-
mation to send several requests to the AllMaps.

And so on.

3.2 Semantics

We now formalize the semantics of the data
flow modeling language. Given a data net
D = 〈N I

ext, N
O
ext, Nint, D, V 〉, we denote with Next

the sets of all external connection nodes, formally
Next = N I

ext ∪ NO
ext. An event e of D is a couple 〈n, v〉,

where n ∈ Next ∪ Nint, and v ∈ V , which models the
fact that the data value v passes through the connection
node n. An execution ρ of D is a finite sequence of events
e0, ..., en. Given an execution ρ we define its projection on
a set of connection nodes N ⊆ Next ∪ Nint, and denote it
with ΠN (ρ), the ordered sequence e′0, ..e

′
m representing the

events in ρ which correspond to nodes in N .
We formally define the semantics of our language in

terms of accepted executions of a data net D. In the fol-
lowing definition, we exploit regular expressions to define
the accepted execution. We use notation Σv∈V to express
alternatives that range over all the possible values v ∈ V
that can flow thorough the net.

Definition 2 (data net accepting execution)
An execution ρ is accepted by a data net D =
〈N I

ext, N
O
ext, Nint, D, V 〉 if it satisfies all the following

properties:

• for each identity element id(a)(b) in D:

Π{a,b}(ρ) =

(∑
v∈V

〈a, v〉 · 〈b, v〉

)∗

• for each operation element oper[f](a,b)(c) in D:

Π{a,b,c}(ρ) = ∑
v,w∈V

(〈a, v〉 · 〈b, w〉+ 〈b, w〉 · 〈a, v〉) · 〈c, f(v, w)〉

∗

• for each fork element fork(a)(b,c) in D:

Π{a,b,c}(ρ) =(∑
v∈V

〈a, v〉 · (〈b, v〉 · 〈c, v〉+ 〈c, v〉 · 〈b, v〉)

)∗

• for each merge element merge(a,b)(c) in D:

Π{a,b,c}(ρ) =

(∑
v∈V

(〈a, v〉 · 〈c, v〉+ 〈b, v〉 · 〈c, v〉)

)∗

• for each cloner element clone(a)(b) in D:

Π{a,b}(ρ) =

(∑
v∈V

〈a, v〉 · 〈b, v〉 · 〈b, v〉∗
)∗

• for each filter element filt(a)(b) in D:

Π{a,b}(ρ) =

(∑
v∈V

〈a, v〉 · (〈b, v〉+ ε)

)∗

• for each last element last(a)(b) in D:

Π{a,b}(ρ) =

(∑
v∈V

〈a, v〉

)∗

·

(∑
v∈V

〈a, v〉 · 〈b, v〉

)
+ ε

Notice that this definition considers data net elements hav-
ing at most two input/output nodes, however it can easily
be extended to handle elements of the data net having more
input/output nodes.

3.3 Data Net Satisfiability

A data net can be used to specify the desired behavior of
a service or everything that concerns the exchange of data
with its communication partners. In particular, as shown in
the data net of Figure 3, external connection nodes are as-
sociated to input (or output) ports which model BPEL4WS
messages, or message parts, which are used to store data re-
ceived (or sent) by the process while interacting with other
services.

Since the behavioral aspect we are interested in concerns
the data flow among the process and its partners, we charac-
terize an execution of a BPEL4WS process W , denoted with
exec(W ), as the set of all possible ordered sequence of in-
put/output messages (or message parts) received and sent
by the process from its activation to its termination. Notice
that each message carries both the information about the ex-
ternal port on which it has been sent/received and about its
content (value).

Definition 3 (data net satisfiability)
Let W be a BPEL4WS process and D =
〈N I

ext, N
O
ext, Nint, D, V 〉 a data net. We say that W

satisfies D if for each process execution ρW ∈ exec(W )
there exists an accepting execution ρ of D such that
ΠNext(ρ) = ρW .



4 Automated Composition of Web Services

In this section we show how data nets can be integrated
in a general framework for the automated composition of
Web services.

4.1 An Automated Composition Frame-
work

The work in [13] (see also [14, 12]) presents a formal
framework for the automated composition of Web services
which is based on planning techniques: component services
define the planning domain, composition requirements are
formalized as a planning goal, and planning algorithms are
used to generate the composite service. The framework
of [13] differs from other planning frameworks since it
assumes an asynchronous, message-based interaction be-
tween the domain (encoding the component services) and
the plan (encoding the composite service). We now recall
the most relevant features of the framework defined in [13].

The composition domain is modeled as a state transi-
tion system (STS from now on) which describes a dynamic
system that can be in one of its possible states (some of
which are marked as initial states and/or as final states)
and can evolve to new states as a result of performing some
actions. Actions are distinguished in input actions, which
represent the reception of messages, output actions, which
represent messages sent to external services, and internal
actions, which represent internal evolutions that are not vis-
ible to external services, i.e., data computation that the sys-
tem performs without interacting with external services. A
transition relation describes how the state can evolve on the
basis of inputs, outputs, or internal actions.

Definition 4 (state transition system (STS))
A state transition system Σ is a tuple 〈S,S0, I,O,A,R,F〉
where:

• S is the finite set of states;

• S0 ⊆ S is the set of initial states;

• I is the finite set of input actions;

• O is the finite set of output actions;

• A is the finite set of internal actions;

• R ⊆ S × (I ∪ O ∪A)× S is the transition relation;

• F ⊆ S is the set of final states.

We have defined a translation that associates a state
transition system to each component service, starting
from its BPEL4WS specification. We omit the for-
mal definition of the translation, which can be found at

http://astroproject.org. Intuitively, input ac-
tions of the STS represent messages received from the com-
ponent services, output actions are messages sent to the
component services, internal actions model assignments
and other operations which do not involve communications,
and the transition relation models the evolution of the ser-
vice. Examples of the STS representation of BPEL4WS
component services can be found in Figure 1.

The automated synthesis problem consists in generating
a state transition system Σc that, once connected to Σ, sat-
isfies the composition requirements. We now recall the def-
inition of the state transition system describing the behavior
of Σ when connected to Σc.

Definition 5 (Controlled system)
Let Σ = 〈S,S0, I,O,A,R,F〉 and Σc =
〈Sc,S0

c , Ic,Oc,A,Rc,Fc〉 be two state transition systems
such that I = Oc and O = Ic. The state transition
system Σc . Σ, describing the behaviors of system Σ when
controlled by Σc, is defined as follows:

Σc . Σ = 〈Sc × S,S0
c × S0, I,O,A,Rc .R,Fc ×F , 〉

where:

〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc .R), if

〈sc, a, s′c〉 ∈ Rc and 〈s, a, s′〉 ∈ R

In an automated synthesis problem, the composition re-
quirements are formalized as a specification ρ, and the com-
position task consists in generating a Σc that guarantees that
the controlled system Σc . Σ satisfies the requirement ρ,
written Σc . Σ |= ρ. In [13], ρ is formalized using EA-
GLE, a requirement language which allows to specify con-
ditions of different strengths (like “try” and “do”), and pref-
erences among different (e.g., primary and secondary) re-
quirements. EAGLE operators are similar to CTL opera-
tors, but their semantics, formally defined in [6], takes into
account the notion of preference and the handling of failure
when subgoals cannot be achieved.

Example 5 The EAGLE formalization of the control-flow
requirements in Example 2 is the following.

TryReach

C.BOOKED ∧ F.BOOKED ∧ H.BOOKED ∧M.SUCC

Fail DoReach

(C.F NOT AVAIL ∨ C.F REFUSED ∨
C.H NOT AVAIL ∨ C.H REFUSED) ∧

(H.NOT AVAIL ∨ H.CANCELED ∨ H.START) ∧
(F.NOT AVAIL ∨ F.CANCELED) ∧
(M.START)

The goal is of the form “TryReach c Fail DoReach d”.
TryReach c requires a service that tries to reach condition



c, in our case the condition “sell holiday packages”. Dur-
ing the execution of the service, a state may be reached from
which it is not possible to reach c, e.g., since the product is
not available. When such a state is reached, the requirement
TryReach c fails and the recovery condition DoReach d, in
our case “no single commitments” is considered.

The definition of whether ρ is satisfied is given in terms of
the executions that Σc . Σ can perform. Given this, we can
characterize formally an automated synthesis problem.

Definition 6 (Automated Synthesis)
Let Σ be a state transition system, and let ρ be an EA-
GLE formula defining a composition requirement. The au-
tomated synthesis problem for Σ and ρ is the problem of
finding a state transition system Σc such that

Σc . Σ |= ρ.

The work in [13] shows how to adapt to this task the “Plan-
ning as Model Checking” approach, which is able to deal
with large nondeterministic domains and with requirements
expressed in EAGLE. It exploit powerful BDD-based tech-
niques developed for Symbolic Model Checking to effi-
ciently explore domain Σ during the construction of Σc.

4.2 Data Requirements as STSs

As we have seen in previous sections, a data net D of a
particular composition problem specifies how messages re-
ceived from the component services can be used by the new
composite process to generate outgoing messages. There-
fore, it is possible to represent D as a STS ΣD, which mod-
els the allowed data flow actions. In particular, input actions
in ΣD represent messages received by the component ser-
vices, output actions represent messages sent by the compo-
nent services and internal actions represent assignments that
the composite process performs on its internal variables.

We assume that, in the BPEL4WS specification of the
composite service, a variable will exist for each connec-
tion node in D; variables associated to external connection
nodes are those used by the new composite process to store
received messages and to prepare the messages to be sent,
while variables associated to internal connection nodes are
those used to manipulate messages by means of internal
functions and assignments. Then ΣD defines constraints
on the possible operations that the composite process can
perform on these variables. A nice feature of our approach
is that this can be done compositionally, i.e., a “small” au-
tomaton can be associated to each element of the data net,
and STS ΣD is obtained as the product of all these small
automata.

More precisely, for each output operation of a compo-
nent service, which is associated to some external input port

in the data net, we define a STS which represents the send-
ing of the message (as an output action) and the storing of
all message parts (as internal actions). As an example, con-
sidering the VTA composition problem, for the output oper-
ation C.request with message parts date and loc we define
the following STS:3

!C.request

C.request.date−>C_request_date

C.request.loc−>C_request_loc

Similarly, for each input operation of a component service,
which is associated to some external output port in the data
net, we define a STS which represents the storing of all mes-
sage parts (as internal actions) and the reception of the mes-
sage (as an input action). As an example, for the input oper-
ation C.booked with message parts info and cost we define
the following STS:

x−>C_booked_info x−>C_booked_cost

x−>C_booked_infox−>C_booked_cost

?C.booked ?C.booked

Finally, we define a STS for each data-flow element of the
data net. These STSs have no input/ouput actions since they
model manipulation of variables through assignments. In
particular:

• for each identity element id(a)(b) in the data net
we define the following STS:

x−>aa−>b

• for each operation element oper[f](a,b)(c) in
the data net we define the following STS:

3In the STS that we use to model data net requirements, we represent
input operations by a ? followed by the operation name, output actions by
a ! followed by the operation name, while internal actions, denoted with
a->b, model an internal operation that copies the value of a in variable b.
We use x as a place-holder for arbitrary nodes/expression: so for instance
x->a denotes all internal actions copying any variable/expression to vari-
able a, and similarly for a->x. Final states are marked with an internal
circle.



x−>a

x−>bx−>a

x−>b

f(a,b)−>c

• for each fork element fork(a)(b,c) in the data net
we define the following STS:

x−>a

a−>c

a−>c a−>b

a−>b

• for each merge element merge(a,b)(c) in the data
net we define the following STS:

x−>b x−>a
b−>c a−>c

• for each cloner element clone(a)(b) in the data net
we define the following STS:

x−>aa−>b

a−>b

• for each filter element filt(a)(b) in the data net
we define the following STS:

x−>aa−>b

x−>a

• for each last element last(a)(b) in the data net we
define the following STS:

x−>a

x−>a

a−>b

The STS ΣD modeling the data net D is the synchronized
product of all the STSs corresponding to external connec-
tion nodes and to data-flow elements of D. The synchro-
nized product Σ1||Σ2 models the fact that the systems Σ1

and Σ2 evolve simultaneously on common actions and in-
dependently on actions belonging to a single system.

4.3 Generating the Composite Process

We are ready to show how we can integrate the proposed
composition approach within the automated composition
framework presented in Section 4.1. Given n component
services W1, ...,Wn and a data net D modeling the data-
flow composition requirements, we encode each component
service Wi as a STS ΣWi

and the data net D as a STS ΣD.
The composition domain Σ for the automated composition
problem is the synchronized product of all these STSs. For-
mally, Σ = ΣD ‖ ΣW1 ‖ .. ‖ ΣWn

. The planning goal
ρ is the EAGLE formalization of the composition termina-
tion requirements, enriched with the requirements that all
the data flow STS need to terminate in a final state.

Given the domain Σ and the planning goal ρ we can ap-
ply the approach presented in [13] to generate a controller
Σc, which is such that Σc .Σ |= ρ. Once the state transition
system Σc has been generated, it is translated into BPEL4WS
to obtain the new process which implements the required
composition. The translation is conceptually simple; intu-
itively, input actions in Σc model the receiving of a message
from a component service, output actions in Σc model the
sending of a message to a component service, internal ac-
tions model manipulation of data by means expressions and
assignments.

5 Conclusions and Related Work

In the paper we have described a new model for defin-
ing data flow requirements for the automated composition
of Web services. Its interesting features are the possibil-
ity to exploit easy to understand graphical notations and to
model the requirements in a data net, as well as the possi-
bility to integrate the requirements in a general framework
for the automated composition of Web services. Future
work will include the implementation of a graphical tool
for drawing the requirements and its inclusion in the AS-
TRO toolset (http://www.astroproject.org) and
its experimental evaluation.

Several methodologies have been proposed to model dif-
ferent aspects of requirements for service oriented applica-
tions, from goal-oriented approaches, see, e.g., [8, 5], to
UML-based object-oriented methodologies, see, e.g., [17].
In these works, high-level requirements are used to guide
and construct by hand the composition. The problem of
the automated synthesis of compositions is not addressed.



These methodologies can be integrated with our approach
and used in a pre-analysis step to guide the analyst to the
definition of the data net that we use to generate automati-
cally the composition.

Most of the works that address the problem of the auto-
mated synthesis of process-level compositions do not take
into account data flow specifications. This is the case of
the work on synthesis based on automata theory that is pro-
posed in [7, 2, 3], and of work within the semantic web com-
munity, see, e.g., [10]. Some other approaches, see, e.g.,
[16], are limited to simple composition problems, where
component services are either atomic and/or deterministic.

The work closest to ours is the one described in [4],
which proposes an approach to service aggregation that
takes into account data flow requirements. The main differ-
ence is that data flow requirements in [4] are much simpler
and at a lower level than in our framework, since they ex-
press direct identity routings of data among processes, and
do not allow for manipulations of data. The examples re-
ported in this paper clearly show the need for expressing
manipulations in data-flow requirements and higher level
requirements.
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