
Towards a Framework for Supporting the Negotiation
between Global and Local Business Requirements

Paolo Traverso1 Marco Pistore2 Marco Roveri1 Annapaola Marconi1
Raman Kazhamiakin2 Pierluigi Lucchese1 Paolo Busetta1 Piergiorgio Bertoli1

1ITC-irst, Via Sommarive 18, I-38050, Trento, Italy
2Department of Information and Communication Technology, University of Trento, Via Sommarive 14, I-38050, Trento, Italy

{traverso,roveri,marconi,lucchese,busetta,bertoli}@itc.it {pistore,raman}@dit.unitn.it

ABSTRACT
The development of service oriented applications very often
needs to address the problem of satisfying two conflicting
kinds of business needs: global business requirements, i.e.,
the regulations that dictate the rules of engagement between
different organizations, and local business requirements, i.e.,
the rules local to each involved partner which derive from its
internal business needs. In this paper, we propose a devel-
opment process where both global and local service require-
ments, as well as their behaviors, are incrementally agreed
among partners and built through negotiation steps. The
development process is supported by the explicit definition
of both global and local requirements at different levels of
abstraction. We express requirements in a language with a
clear semantics, and which allows for explicit links to exe-
cutable business processes, e.g., written in BPEL4WS. This
development process opens up the possibility to adopt a va-
riety of supporting techniques. In particular, automated
verification is used to detect design or implementation prob-
lems. Automated synthesis of executable business processes
allows for a speed up in the development process and re-
duces development effort. Finally, execution monitoring is
able to detect run-time problems with respect to specified
requirements.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and
Techniques; D.2.1 [Software Engineering]: Require-
ments/Specifications; D.2.4 [Software Engineering]:
Software/Program Verification; I.2.2 [Artificial Intelli-
gence]: Automatic Programming; I.6.4 [Simulation and
Modeling]: Model Validation and Analysis

General Terms
Design, Languages, Verification

Keywords

Service composition models and languages, Requirements
for service-oriented processes

1. INTRODUCTION
In several application domains, service-oriented computing
should provide a universal basis for the integration of busi-
ness processes that are distributed across different entities,
e.g., different organizations or companies. In these domains,
different organizations must interact and cooperate accord-
ing to global, shared requirements. At the same time, each
organization has its own internal business needs, which are
specific to the business it carries out. As a consequence, in
these domains, two opposite and often conflicting kinds of
business needs have to be taken into account. From one side,
the global business rules, i.e., the regulations that dictate the
rules of engagement between different organizations. From
the other side, the local business rules, i.e., the rules local
to each involved partner and deriving from its own internal
business needs.

Several applications have this characteristic. This is the
case, for instance, of several e-government applications
involving different administrative offices or departments,
where global rules derive from national or regional require-
ments and norms, while local rules derive from each office’s
responsibilities and internal organization. Another exam-
ple are business coalitions or market-places, where different
companies agree to obey to common market regulations, but
still pursue their own distinct profit and interest.

In most of the cases, it is rather natural that global and local
business rules have opposite goals and tend to conflict. For
instance, a national law may require maximum transparency
from a government office towards the citizen, e.g., the citizen
should have the possibility to inquire at any time the status
of any on-going procedure he is involved in. However, an
administrative office may not like to be slowed down in its
internal procedures with too many external interactions. A
common market regulation may require that an offer evalu-
ation is proposed to a customer after all partners’ offers are
available, while each vendor’s need is to get to know as soon
as possible whether the client will buy the product or not.

Dealing with the conflicts between global and local business
rules, both valid and well motivated from the two different
points of view, is what makes this kind of applications diffi-
cult to develop, and what makes them substantially different



from traditional fully centralized applications, where an au-
thority dictates the rules of the game, and fully distributed
systems, where each actor has not to deal with general regu-
lations and norms. As a consequence, the development pro-
cess can hardly be carried out according to classical software
development methodologies, which is not able to take into
account both the global and the local rules and their natural
conflicts. Moreover, software engineering tools that support
the life-cycle of distributed business processes should be re-
thought to support the development process that takes into
account both the global and local business needs.

Within Astro, an Italian national project which aims at the
study and application of service-oriented computing tech-
niques, we are defining a novel development methodology
and the supporting tools necessary to face the challenges
outlined above. This paper describes this novel approach.

The central idea is that conflicting global and local busi-
ness rules should be negotiated within the development pro-
cess. More precisely, the proposed development process in-
terleaves the phases of specification of both global and lo-
cal rules with phases of negotiation between global and local
needs. As a consequence, the choreography, i.e., the global
view of how different partners interact, the orchestration,
i.e., the description of how one partner interacts with (some
of) the other partners, and the internal business process
of each partner, are incrementally built through negotiation
steps, thus emerging in a commonly agreed choreography
and orchestration that, by obeying to global laws and norms,
mediates among global and local needs.

To implement this development process based on negotia-
tion, we propose a conceptual framework where the distinc-
tion between global and local business rules is explicit in the
different phases of the development process, and at different
levels of abstraction. We specify global and local business
rules both at the level of strategic requirements, i.e., busi-
ness goals and motivations, and at the level of procedural
requirements, i.e., specifications on how a business should
be carried out. The “transparency towards citizens” and
the “internal administrative office efficiency” are two exam-
ples of, resp., global and local strategic requirements, while
a process that does or does not allow for interaction at each
step with the citizen is, resp., a global or local, procedural
requirements. The proposed methodology also takes into
account that not all the local rules of a given partner can
be made visible to the other partners. For instance, a cus-
tomer company may decide to keep confidential its internal
business rules on how offers to customers are prepared, in
order to keep a competitive advantage.

In this requirements driven development process, global and
(external and internal) strategic and procedural require-
ments are stated with a precise notation and with a clear
semantics, and are explicitly linked to the detail design and
implementation of business process, e.g., written in standard
business process modeling and execution languages, like (ab-
stract or executable) BPEL4WS [1]. This opens up the pos-
sibility to provide tools that support the process based on
negotiation during the development cycle: verification tools
that detect specification, design or implementation prob-
lems, e.g., the fact the negotiation process leads to a chore-

ography and/or orchestration that actually does not satisfy
some global or local rule; synthesis tools that suggest so-
lutions, like a business process design or implementation,
to speed up the development process and reduce develop-
ment effort; monitoring tools, i.e., tools that monitor the
execution of a process to detect run-time problems w.r.t.
requirements.

The described approach has been developed guided by a real
application domain, investigated inside the Astro project. It
consists of service-oriented applications for the public ad-
ministration. In this domain, procedures involve several dif-
ferent administrative offices, which must follow the strict
National and Regional laws and global policies concerning
these procedures, but which should also preserve their own
autonomy in order to deal with other tasks related to other
procedures and to obey to its own internal requirements.

The paper is structured as follows. In Section 2, we intro-
duce the application domain that will be used to explain our
approach all along the paper. In Section 3, we describe the
proposed development process supporting explicit negotia-
tion phases. In Section 4, we explain how global and local
rules can be described with a precise language for require-
ments specifications, while in Sections 5 and 6 we discuss
how all of this opens up the possibility to construct tools
that support the development process. We provide a dis-
cussion of related works and some concluding remarks in
Section 7.

2. THE CASE: PUBLIC ENVIRONMEN-
TAL AGENCY SYSTEM

The Environmental Protection Agency (EPA) is a local
agency which deals with a wide range of environmental mat-
ters including protecting air, water and soil quality, manag-
ing waste, preventing or controlling pollution and promot-
ing sustainable industry. To address these issues EPA has
to deal with complex administrative procedures distributed
among various actors (administrative offices as well as cit-
izen and industries) and regulated by law: European, Na-
tional, and Local norms contribute to specialize the same
procedure adding new constraints, new actors and goals.
Norms can be seen as a collection of goals and activities del-
egated to specific actors; moreover they specify constraints
and obligations concerning for instance minimal and maxi-
mal durations of specific steps or of the overall procedure.
The definition of a new procedure in the domain of Envi-
ronmental Protection is a costly and time consuming task,
that has to take into account constraints deriving both from
norms and from the internal organizational structure of the
actors involved in the procedure.

In this paper, we consider a specific licensing procedure for
the establishment and operation of a Waste Disposal or Re-
cycling Facility: A citizen or a company submits an applica-
tion to obtain the license for its waste disposal or recycling
facility (incinerator, private landfill,...); the local govern-
ment, involving various agencies and experts, evaluates the
proposal and authorizes it, if it complies with high standards
dictated by norms. We will assume that the EPA wants to
automate this procedure using web services interfaces, as
they offer a platform independent approach for integrating
applications.



Figure 1: Activity Diagram for the Waste Facility License Procedure.

According to the classical approach, EPA assigns the re-
sponsibility of mapping this procedure to a business analyst.
Starting from specific regulations and norms (“D.C.I. 27
luglio 1984”; “L.R. 13 aprile 1995 n.59”; “D.Lgs. 5 febbraio
1997”) and interacting with the various actors involved, the
business analyst models the procedure with the activity di-
agram depicted in Fig. 1. In this diagram, nested hexagon
are used to describe the tasks and sub-tasks assigned to the
different parties involved. Any citizen proposing to establish
or operate a facility for solid wastes disposal has to apply
for a certificate of designation; the application must be ac-
companied by all documents specified by the specific norms
(e.g. an engineering design and operations report). The ap-
plication is registered by the Protocol Office (PO) and then
it is reviewed by the Waste Management Office (WMO) to

determine whether the submitted documents are complete.
If necessary, the WMO can ask the citizen to provide addi-
tional information or clarifications in order to complete the
documentation. The validation of the documents must com-
plete within 30 days from the registration of the application.
The WMO is then in charge of appointing the Technical
Commission (TC), which is composed of various consultants
and directors of public agencies (e.g. Sanitary Agency, Wa-
ter Quality Control Agency, Soil Water and Plant Testing
Laboratories, Environment Engineers,...). Each member of
the TC has to produce a technical report and send it to
the WMO which is responsible to set the Conference and to
notify all the participants (TC members, citizen, WMO’s re-
sponsible for the application,...). The aim of the Conference
is to determine whether the facility complies with the norms,



taking into account the submitted information and all the
technical reports of the TC members. After the conclusion
of the Conference the WMO will be in charge of producing
the recommended determination and send it to the Province
Board (PB) and to the citizen within 90 days from the Con-
ference Day. The PB will evaluate the recommendations,
draft the final determination and finally notify the citizen.
Each application for a solid waste disposal site or facility
should complete within 150 days from the PO registration.
This global process defined by the business analyst is used
as a blueprint for the design and implementation of the re-
quested software components. In particular, starting from
this global view, each actor involved defines (or adapt, if
already existing) its internal processes and implements the
web services necessary to carry out its part of the procedure.

The classical development approach outlined above is
strongly based on a centralized, “authoritative” design that
does not fit the requirements of distributed business pro-
cesses. In particular, it does not take into account that the
process developed by the analyst will have a high probabil-
ity of being in conflict with the actor’s internal requirements
and constraints. A critical point is, for instance, the inter-
action between Citizen and WMO in order to complete the
submitted documents. The norms regulating the procedure
only require that the validation of the documents should ter-
minate within 30 days. The Citizen would prefer to be able
to submit new documentation incrementally within the 30
days, until the validation is successful. On the other hand,
this iterative submission of documents would affect the effi-
ciency of the WMO, since the scheduling of its work would
depend on the Citizen. According to Fig. 1, the analyst
has addressed this conflict by allowing the citizen to sub-
mit further information only once. However, from the dia-
gram it is impossible to judge whether this is an acceptable
compromise between these conflicting requirements. The
negotiation-based development approach discussed in the
next section addresses this kind of problems.

3. A DEVELOPMENT PROCESS BASED
ON NEGOTIATION

The development process that we are designing is based on
two principles: it is requirements driven and it is based on
the dichotomy between the choreography and orchestration
in the development of service oriented applications (see also
Fig. 2). On the former principle we remark that a clear
model of the conflicting requirements is necessary for be-
ing able to mediate among them. More precisely, we need
to represent requirements at two different levels of abstrac-
tion: at a strategic level, for representing business goals and
motivations, and at a procedural level, for describing how
a business should be carried out. The activity diagram in
Fig. 1 can be seen as a description of the procedural re-
quirements, since it describes the way the procedure should
be carried out. Strategic requirements include, e.g., the fact
that the Citizen expects the WMO to be collaborative, while
the WMO has the goal of reducing interactions. In Section 4
we will define suitable notations for representing them.

The terms orchestration and choreography are often used
to refer to the two key aspects of service oriented applica-
tions [13]. In orchestration, the application is considered
from the perspective of one of the business parties. The fo-

Figure 2: The Proposed Development Process.

cus is on the interaction that the party under consideration
performs with internal and external web services in order
to carry out its tasks inside the procedure. Orchestration
is usually private to the business party, since it contains re-
served information on the specific way a given process is
carried out. Choreography, on the other hand, describes the
interactions for a global, neutral perspective, in terms of
valid conversations or protocols among the different parties.
Choreography is usually public, since it defines the common
rules for a valid composition of the distributed business pro-
cesses in the business domain. In our process, we exploit the
dichotomy between choreography and orchestration at all
levels of the development. We will have both choreographic
and orchestration descriptions of strategic requirements, of
procedural requirements, and of the implementation based
on web services.

The process we have been defining consists of five different
phases (see Fig. 3). Taking into account the two principles
just described, four phases correspond to the requirements
analysis and to the implementation, done both from a chore-
ographic and from an orchestration point of view. The fifth
phase consists of the interface negotiation. This is the cen-
tral phase of the whole process and plays the role of bridging
between choreography and orchestration as well as between
requirements and implementation. During this phase, the
“choreographic” analyst responsible of the procedure and
the “orchestration” analysts representing the different part-
ners negotiate the design of the distributed application to
be developed, mediating among conflicting goals. This ne-
gotiation phase terminates (and development starts) when
an agreement has been reached on the services every partner
should provide.

4. GLOBAL AND LOCAL REQUIRE-
MENTS SPECIFICATION

Requirements play a fundamental role in the development
process discussed in the previous section. Therefore, it is
important to adopt flexible notations and methodologies for
their specification. Activity diagrams like the one in Fig. 1



Phase 1 – Choreographic requirements

Objective: Define the requirements for the management of the procedure.
Responsible: Business analyst in charge of the new procedure.
Input: Description of the procedure (laws and regulations; discussions with the experts. . . ). Definitions of the

existing services that can be exploited in the procedure. Legacy systems that the procedure should reuse
(e.g., existing centralized information systems).

Output: Requirements specification document, covering a strategic (actors involved with their goals, responsibilities,
mutual dependencies. . . ) and a procedural (actors’ tasks, control and data flows among actors and tasks. . . )
description of the choreographic requirements for the new procedure.

Phase 2 – Actor’s orchestration requirements

Objective: Define the actor’s requirements on the services it can provide to support the new procedure.
Responsible: Business analyst of the specific actor.
Input: Description of the roles and responsibilities of the actor inside the procedure (laws and regulations; discus-

sions with the experts. . . ). Internal requirements of the actor (i.e., business objectives, internal procedures
and organization. . . ). Definitions of actor’s services and of other software that can be reused in the new
procedure.

Output: Requirements specification document, covering a strategic (actor’s goals and responsibilities; as-
sume/guarantee relations with external actors. . . ) and a procedural (actor’s tasks and task decompositions,
internal business processes,. . . ) description of the orchestration requirements of the specific actor inside the
new procedure.

Phase 3 – Interface negotiation

Objective: Define the interfaces of the web services provided by the different actors.
Responsible: Board of the analysts responsible of Phases 1 and 2.
Input: Requirements specification documents produced in Phases 1 and 2.
Output: Definition of the web services provided by the different actors (and of the centralized systems) that permit

the implementation of the procedure. The services are defined in terms of their interfaces (e.g., in WSDL),
of the protocol for interacting with them (e.g., in business process specification languages like BPEL4WS),
and, at the strategic level, of the tasks that the services are supposed to perform and the assumptions for
their correct behavior.

Phase 4 – Development of the choreography

Objective: Development of the centralized software systems (e.g., centralized information systems, wrappers for legacy
systems. . . ) necessary to support the new procedure.

Responsible: Analyst / system architect responsible of the new procedure.
Input: Definition of the choreographic requirements (Phase 1). Definition of the interfaces that the choreographic

component should provide (Phase 3).
Output: Detailed design and implementation of the choreographic system.

Phase 5 – Development of actor’s web services
Objective: Development of the web services of a specific actor.
Responsible: Analyst / system architect responsible of the actor’s software systems.
Input: Definition of the orchestration requirements of the actor (Phase 2). Definition of the interfaces of the services

that the actor should provide (Phase 3).
Output: Detailed design and implementation of the actor’s web services (or adaptation of the existing services and

other software components).

Figure 3: The Proposed Development Process Phase-by-Phase.

are fine for representing the procedural requirements, but
they need to be completed with a description of the strate-
gic requirements. We exploit the Tropos framework to this
purpose. Tropos is a framework for the requirements-driven,
agent-oriented development of software [2]. It is based on
the premise that during requirements analysis it is impor-
tant to understand and model the strategic aspects under-
lying the organizational setting within which the software
system will eventually function. By understanding these
strategic aspects one can better identify the motivations for

the software system and the role that it will play inside the
organizational setting. In previous works [5, 16] we have
shown how Tropos can be adapted to represent the require-
ments of service-oriented applications.

Fig. 4 is an example of a Tropos diagram that provides high-
level choreographic representation of the requirements of our
case study. It describes the actors (circles) involved in the
considered procedure with their strategic goals (the ovals
attached to the actors). For instance in the diagram we



Figure 4: The Choreographic Diagram of Strategic Requirements.

have the Citizen that aims to obtain a waste facility license
which is represented with the goal GetWasteFacilityLicence);
the WasteManagementOffice that aims to handle with the sev-
eral applications for getting a license (goal ManageApplica-

tion). The Tropos diagram also describes the interactions
and contracts among the different parties. These interac-
tions are represented at a strategic level by means of de-
pendencies (the ovals linked to two different actors) that
describe intent/offer matchings among actors. For instance
the fact that the Citizen depends on the ProtocolOffice for the
activation of the application to obtain a waste facility license
is represented with the goal dependency ActivateApplication-

Management. Besides goals and dependencies, Tropos per-
mits to represent so called soft-goals and soft-dependencies
(clouds). These represent non-functional requirements that
will have an impact on how the procedure will be imple-
mented, but whose achievement cannot be defined precisely
in terms of clear cut properties (for instance, the apprecia-
tion is subjective, or the fulfillment of the requirement can
occur only to a given extent). The goal of the Citizen of
having a “transparent application management”, or the de-
pendency of having a “fair evaluation” from the Province
Board are examples of these “soft” requirements.

It has to be noticed that in Fig. 4 and in Fig. 1 we have
represented separately the strategic and procedural descrip-
tion of the choreographic requirements. However, these two
diagrams are interconnected in the actual model of choreo-
graphic requirements. Indeed, each activity is linked with
the strategic requirements that motivate its presence in the
model and that define its expected behavior.

An example of a linked representation of strategic and pro-
cedural requirements, is provided in Fig. 5 from the local,
“orchestration” point of view of the WasteManagementOffice.
This diagram represents not only the global goals of the
WMO already represented in Fig. 4 (shaded in the figure),
but also its private goals representing the internal needs,
requirements, and constraints of the WMO. The goals are
organized in a tree structure that refines high-level goals into
lower level goals, until they are operationalized into tasks.
For instance the goal ManageApplication is refined in two sub-
goals: ValidDocuments and CompleteApplication. This decom-
position is motivated by the requirements of having correct
applications, which is captured by soft-goal Correctness. In-
deed, in the diagram contribution links are used to represent
the fact that two sub-goals contribute to the achievement of
soft-goal Correctness. The goal ValidDocuments is further re-
fined in the goals CompleteApllicationDocuments and ValidTechi-

calReports. These two goals are respectively operationalized
with task ManageDocuments and ValidateTechicalReports. It has
to be noticed that the latter task is not present in the chore-
ography depicted in Fig. 1. Indeed this task is motivated
by internal requirements of the WMO. In the diagram, two
different kinds of links between goals and tasks are shown.
Solid arrows are used to describe that some tasks have been
obtained by the operationalization of certain goals, while
dashed lines express the fact that the satisfaction of a cer-
tain requirement depends on a given task. One can see, for
instance, that different tasks are responsible to guarantee
the completion in time of the different phases of the proce-
dure.



Figure 5: Strategic and Procedural Requirements of the WMO.

The Tropos notations discussed in this section are sup-
ported by a corresponding formal language, Formal Tro-
pos [4], which allows for a precise definition of the require-
ments and of the activity diagrams and enables the usage
of verification tools for detecting specification, design, or
implementation problems. Formal Tropos permits to spec-
ify the valid behaviors and the relations among the differ-
ent actors, dependencies, goals, and tasks that appear in
a Tropos model. At the strategic level the Formal Tropos
annotations specify properties like conditions on goal fulfill-
ment, and assume/guarantee conditions on delegations. At
the procedural level, they define pre- and post-conditions
on tasks and sub-tasks. Even more important, Formal Tro-
pos annotations allow to link together these two levels and
the underlying implementation level. The key advantage of
Formal Tropos with respect to other approaches is that it
defines the dynamic aspects of a model and supports its for-
mal verification already at the requirements level, without
requiring an implementation of the specification, e.g., into
BPEL4WS processes.

We conclude this section by remarking that, after the nego-
tiation phase has been concluded, the refinement process of
the requirements diagrams can further proceed transform-
ing activity diagrams into executable code. In our frame-
work we are adopting BPEL4WS [1] at the implementation
level. BPEL4WS is quickly emerging as the language of
choice for the description of process interactions. It pro-
vides core concepts for the definition of business process in
an implementation-independent way, and allows both for the

definition of internal business processes and for describing
and publishing the external business protocol that defines
the behavior of the interaction. Therefore, BPEL4WS per-
mits to describe both the orchestration and the choreogra-
phy of a business domain with an uniform set of concepts
and notations. Most notably, BPEL4WS can be easily ob-
tained by refining activity diagrams like the ones in Fig. 1 or
in the bottom part of Fig. 5: see for instance [6] for a Model
Driven approach to this refinement. Finally, as shown in [5,
16], links to the requirements can be maintained into the
BPEL4WS code, so that requirements traceability is possi-
ble.

5. SUPPORTING THE PROCESS: VERIFI-
CATION

The development process described before is accompanied
by verification tools that support the different activities nec-
essary to develop correct service oriented applications [5, 16].
These tools allow for verifying the correctness of a model at
all levels of abstractions covered by our methodology. At
the strategic level verification can be used to validate the re-
quirements and to check their consistency. At the procedural
level, verification can be used for proving that the processes
are free of anomalies such as “deadlocks” (when a execution
is “blocked” and no longer proceeds through the process)
and “livelocks” (when an execution gets “stuck” in a never-
ending loop), or to check the timing constraints on the dif-
ferent activities. At the implementation level, verification
can point out incompatibilities and inconsistencies among



the different web services that need to interact to carry out
the procedure. Moreover, verification can be used to check
the consistency among the different levels of a specification,
that is, the procedural level of requirements should respect
all constraints stipulated at the strategic requirements level,
and the implemented web services should be a refinement of
the activities defined at the procedural level. Finally, ver-
ification can be done both from a choreographic point of
view, e.g., to check that the defined procedure respects all
constraints imposed by the law, and from an orchestration
point of view, e.g., to check that the services a party will
offer are compatible with its own internal requirements and
goal. For lack of space, we cannot give a comprehensive de-
scription of all applications of verification inside our process.
We focus instead on some specific application scenarios.

A first usage of verification techniques is for validating chore-
ographic requirements. While defining a global choreogra-
phy, one should deal with partners interactions in terms of
intent/offer matches as well as with the business rules com-
mon for all the participants of the business process. This
makes the definition of this requirements model a complex
and error-prone task. In order to catch misunderstandings
and inconsistencies in this model one can verify it against
set of properties that every execution of the system should
satisfy (assertion properties) or some execution may satisfy
(possibility properties). Querying the model allows one to
check the correctness of the model with respect to the prop-
erty or to check whether the model is not over-specified and
some desirable behaviors are captured by the system. For
instance, one property that the choreography should guar-
antee is that, if all actors carry out their own tasks, as de-
scribed in the strategic requirements model, then the citizen
will eventually get a (positive or negative) answer to the li-
cense request. However, a missing goal or dependency in
the strategic requirements diagram may falsify this prop-
erty. Suppose for instance that we remove dependency Ac-

tivateApplicationManagement between the Citizen and the PO

from the requirements in Fig. 4. Then there is no guarantee
that the Protocol Office will eventually forward our appli-
cation to the WMO after having registered it, and the chain
of activities leading to the answer to the citizen is broken.
Indeed, if we exploit the verification techniques provided
by Formal Tropos to verify that the GetWasteFacilityLicense

goal of the Citizen will be eventually fulfilled, we will get a
negative answer. Actually, the verification tool provides a
counter-example scenario, showing that it is possible for the
PO to fulfill all its goals without having to forward to the
WMO the citizen’s application.

At a lower level of abstraction, verification can be used to de-
tect anomalies like deadlocks in the activity diagrams defin-
ing the interactions among parties. For instance, let us as-
sume that, within the negotiation process, we modify the
definition of the ManageDocuments activity in Fig. 1 as de-
scribed in Fig. 6. The intuition is that we want to model
a WMO that keeps interacting with the citizen in an itera-
tive, cyclic way until a complete documentation is obtained.
If this modification is not reflected into the orchestration
activities of the Citizen, a deadlock occurs. Indeed, if the
documents provided are not correct also after a first inte-
gration, the WMO will ask for further documents. However,
according to Fig. 1, after a first integration the Citizen ex-

Figure 6: Modified Citizen - WMO interaction.

pects either a conference announcement or an abortion of the
procedure, so he is not able to provide further documents.
The verification techniques we are providing can be used for
finding such inconsistencies. For instance, if the analyst de-
signing the services of the Citizen verifies his internal process
against the modified choreography described above, the in-
consistency is detected and the following scenario leading to
the deadlock condition is reported as a witness:

Citizen PO WMO

Request

Register Application

Registration Info Validate Documents

Integration Request

Integration Documents

Validate Documents

Integration Request

A last example of verification consists in checking if the
choreographic process model is compatible with the local
needs and expectations of a specific actor. Let us assume
that the choreographic process adopted permits a cyclic in-
teraction between the WMO and the Citizen in order to obtain
integration documents, as in Fig. 6. Then the verification
tool shows that the internal goal CorrectTermination of the
WMO may be violated. Indeed, the formal specification of
the goal is that every application submitted to the WMO

should terminate with a recommendation or should be even-
tually aborted by the WMO. This property is violated if the
choreography allows for cyclic interactions with the Citizen,
and the following example of goal violation is reported by
the verification tool:

Citizen PO WMO

Request

Register Application

Registration Info

Validate Documents

Integration Request

Integration Documents

Application

Created

Registered

Activated

Start Cycle

End Cycle



TECHREP

CONF MAN

COMMITTEE

BOARD

PROTOCOL
SECRETARYOFFICE

WASTE MANAGEMENT OFFICE

EXPERT
TECH

PROVINCE

CITIZEN

S
E

R
V

IC
E

S
Y

N
T

H
S

IZ
E

D

Figure 7: Synthesis of the WMO Service.

6. SUPPORTING THE PROCESS: SYN-
THESIS AND MONITORING

In this section we comment on how we can exploit program
synthesis techniques to automate the development of web
services within our reference process. These techniques come
to help after the design and the negotiation of the web ser-
vices has been done and every participant has to implement
his own services. The scenario we are interested in is when
the participant already has services (or other software com-
ponents) available that can be exploited to carry out his ac-
tivities, but these services have to be adapted and composed
in a way suitable to the new procedure ad hand. In our case
study, the WMO already has internal services available for
managing the standard tasks occurring in the different pro-
cedures the office is involved in. These services represent
in some sense the ’back-office’ of the WMO (see Fig. 7). In
our case, the back-office consists of a Secretary service, of a
Technical Report Expert and of a Conference Management. The
secretary is in charge of evaluating whether the documents
provided by the user conform to the requirements, to in-
crementally file the evolution of the request, and to extract
relevant data that have to be communicated to the other
parties involved. The technical report expert is in charge
to communicate the relevant data to the technical commit-
tee, and collect and interpret his responses. The conference
management is in charge of organizing the meetings between
the participants involved. To participate to the new proce-
dure, the WMO has hence to implement one more service
that interacts with the other internal “back-office” services
and with the external services of the other participants.

Automating the generation of this new service can be seen
as a particular instance of automated generation of web ser-
vices. By automated composition [14, 20] we mean the task
of generating automatically, given a set of available web ser-
vices, a new web service that achieves a given goal, i.e., that
satisfies a given requirement, by interacting with the avail-
able web services. Different techniques have been proposed
so far which address this problem. In our framework, we ex-
ploit the automated task planning techniques described in
[14, 20]. According to the approach of [14, 20] (see Fig. 8),
we take as our starting point the BPEL4WS specification
of the existing internal and external services (W1, . . . , Wn).
In our case, these descriptions are either already available
to the WMO (for the internal services) or they are an out-
come of the negotiation phase (for the external services).
We encode each of the BPEL4WS specification in a state
transition system (ΣW1 , . . . , ΣWn in Fig. 8), which provides

Σ
W1

Σ
Wn

Σπ G

Executable
BPEL4WS
ProcessState

Transition
Systems

Σ

 P
LA

N
N

E
R

πsuch that

BPEL4WS
Processes

W1

Wn

Composition Goal G

W

Figure 8: Automated Composition.

a sort of operational semantics to the BPEL4WS model.
Each of them describes the corresponding web service as a
state-based dynamic system, that can evolve, i.e., change
state, and that can be partially controlled and observed by
external agents. In this way, it describes a protocol that
defines how external agents can interact with the service.
From the point of view of the new composed service that
has to be generated, say W , the state transition systems
ΣW1 , . . . , ΣWn constitute the environment in which W has
to operate, by receiving and sending service requests. They
constitute what, in planning literature, is called a planning
domain, i.e., the domain where the planner has to plan for
a goal. In our case, the planning domain is a state transi-
tion system Σ that combines ΣW1 , . . . , ΣWn . Formally, this
combination is a parallel composition, which allows the n
services to evolve independently and concurrently. Σ repre-
sents therefore all the possible behaviors, evolutions of the
planning domain, without any control performed by the ser-
vice that will be generated, i.e., W . The composition goal
G (see Fig. 8) imposes some requirements on the desired
behavior of the planning domain. In our case, the goal can
be obtained from the “orchestration” requirements model of
the WMO. Given Σ and G, the planner generates a plan π
that controls the planning domain, i.e., interacts with the
external services W1, . . . , Wn in a specific way such that the
evolutions satisfy the goal G. The plan π encodes the new
service W that has to be generated, which dynamically re-
ceives and sends invocations from/to the external services
W1, . . . , Wn, observes their behaviors, and behaves depend-
ing on responses received from the external services. The
plan π is encoded as an automaton and can hence contain
complex control constructs, like tests over observations, con-
ditionals, loops, etc. As a final step, we can translate π into
process executable languages, like BPEL4WS.

Though still preliminary, the experiments reported in [14,
20], show that the automated synthesis approach described
above can deal with cases that are far from trivial. More-
over, an interesting possibility offered by the composition
approach described in Fig. 8 is that of obtaining monitors,
i.e., software components that are able to observe the mes-
sages exchanged with (internal or external) services and to
report whether they are violating the BPEL4WS protocol
that they are supposed to implement. Indeed, we can ex-
ploit to this purpose the finite state machines ΣW1 , . . . , ΣWn ,



that capture the operational semantics of the corresponding
BPEL4WS specifications.

7. CONCLUSIONS AND RELATED WORK
In this paper we propose a development process where global
and local requirements are incrementally defined within a
negotiation process. Requirements are described in a lan-
guage with a clear semantics, which allows us to define pre-
cise links between business requirements and (executable)
business processes. This opens up to the construction of
tools for the analysis of requirements, the verification of
business processes, as well as their synthesis and monitor-
ing. The proposed approach has been inspired by and ex-
perimented with a real application we are developing in the
public administration field. We see this work as a first step
towards the construction of techniques and tools that sup-
port the development of distributed services by reducing de-
velopment time, efforts, and errors.

The Model Driven Architecture [3], backed by OMG spec-
ifications such as UML 2.0 [18, 17] , aims to separate
business logic from the details of platforms, programming
languages and middleware. Developers create platform-
independent models (PIMs), which can be semiautomat-
ically transformed to platform-dependent models (PSMs).
We share with this approach the need for high level spec-
ifications of services; more specifically, in terms of “Model
Driven Service Composition” [11], we share the idea that ser-
vice requirements should be analyzed in a systematic way,
and the idea to describe business rules as precise statements.
However, none of the previous approaches is based on the
idea of incremental definition of the business rules that come
out of a negotiation between global and local goals. In our
proposal, requirements are structured, analyzed, and nego-
tiated according to a clear distinction between internal busi-
ness needs for a single business process, dependencies of ob-
jectives among different partners, and business rules that
are common to a community of services. The development
process described in other works, see, e.g., [11, 12], focuses
on an important but orthogonal issue, i.e., how high level
requirements (e.g., expressed in UML and OCL [11]) for a
single process can be classified for service composition, and
how they can be refined into executable processes. Some of
the model driven approaches advocate for the use of verifi-
cation techniques, e.g., based on Petri nets [15], or model
checking [7, 8]. However, in these approaches, the problem
of verifying local versus global rules is not addressed.

In [21] a formalism is proposed, based on Petri nets, which
allows for verifying that local implementations of work-
flows do not create anomalies over organizational borders.
However, the considered development process is purely top-
down, from community requirements to the local implemen-
tation of workflows that have to satisfy the global require-
ments. There is no global-local requirements negotiation
in [21], and thus the problem of verification of local versus
global requirements is not addressed.

Different automated planning approaches have been pro-
posed for the composition of web services [22, 10], for the in-
teractive composition of information gathering services [19],
and for providing viable plans satisfying specific queries of
the user [9]. Within the development process that we pro-

pose, we use instead automated planning techniques to gen-
erate automatically executable business processes from high
level requirements, and to generate automatically at design
time monitors that can detect problems at run-time.

Acknowledgments
This work has been supported in part by the FIRB-MIUR
project RBNE0195K5 “Astro”. The authors want to thank
all members of the Astro project for their collaboration and
their feedback.



8. REFERENCES
[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,

F. Leymann J. Klein, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language For Web Services,
Version 1.1, 2003.

[2] J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering:
the Tropos project. Information Systems,
27(6):365–389, September 2002.

[3] D.S. Frankel. Model Driven Architecture: Applying
MDA to Enterprise Computing. John Wiley and Sons,
2003.

[4] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore,
M. Roveri, and P. Traverso. Specifying and analyzing
early requirements in Tropos. Requirements
Engineering, 2004. To appear.

[5] R. Kazhamiakin, M. Pistore, and M. Roveri. A
framework for integrating business processes and
business requirements. In Proc. 8th Int. IEEE
Enterprise Distributed Object Computing Conference
(EDOC’04), 2004. To appear.

[6] J. Koehler, R. Hauser, S. Kapoor, F. Y. Wu, and
S. Kumaran. A model-driven transformation method.
In Proceedings of the Seventh International Enterprise
Distributed Object Computing Conference (EDOC’03),
pages 186–197, Brisbane, Queensland, Australia,
September 2003. IEEE Computer Society.

[7] J. Koehler, R. Hauser, S. Kapoor, F.Y. Wu, and
S. Kumaran. A Model-Driven Transformation Method.
In EDOC 2003, pages 186–197. IEEE Press, 2003.

[8] J. Koehler, G. Tirenni, and S. Kumaran. From
Business Process Model to Consistent
Implementation: A Case for Formal Verification. In
EDOC 2002, pages 96–106, 2002.

[9] A. Lazovik, M. Aiello, and Papazoglou M. Planning
and Monitoring the Execution of Web Service
Requests. In Proc. of the 1st International Conference
on Service-Oriented Computing (ICSOC’03), 2003.

[10] S. McIlraith and S. Son. Adapting Golog for
composition of semantic web Services. In Proc. 8th
International Conference on Principles of Knowledge
Representation and Reasoning, 2002.

[11] B. Orriens, J. Yang, and M. Papazoglou. Model
Driven Service Composition. In Proc. of the 1st
International Conference on Service-Oriented
Computing (ICSOC’03), 2003.

[12] M. Papazoglou and J. Yang. Design Methodology for
Web Services and Business Processes. In Proc. of the
Technologies for E-Services Third International
Workshop (TES’02), pages 54–64, 2002. Lecture Notes
on Computer Science, Springer-Verlag, Berlin,
Germany.

[13] C. Peltz. Web Services Orchestration and
Choreography. Web Services Journal, July 2003.

[14] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and
P. Traverso. Planning and monitoring web service
composition. In Proc. 11th Int. Conf. on Artificial
Intelligence: Methodology, Systems, Architectures,
2004. To appear.

[15] D. Quartel, M. van Sinderen, and L. Ferrera Pires.
Service Creation: a model based approach. In Proc. of
the 7th IEEE Workshop on Future Trends of
Distributed Computing Systems (FTDCS’99), 1999.

[16] M. Roveri R. Kazhamiakin, M. Pistore. Formal
Verification of requirements using Spin: A Case Study
on Web Services. In Proceedings of the 2nd
International Conference on Software Engineering and
Fomal Methods (SEFM’04), Beijing, China, 2004.
IEEE Computer Society.

[17] P. Rivett and OMG Group. Unified Modeling
Language: Infrastructure - version 2.0, 2003.

[18] B. Selic and OMG Group. Unified Modeling
Language: Superstructure - version 2.0, 2003.

[19] S. Thakkar, C. Knoblock, and J.L. Ambite. A View
Integration Approach to Dynamic Composition of Web
Services. In Proceedings of ICAPS’03 Workshop on
Planning for Web Services, Trento, Italy, June 2003.

[20] P. Traverso and M. Pistore. Automatic composition of
semantic web services into executable processes. In
Proceedings of 3rd International Semantic Web
Conference (ISWC2004), Lecture Notes Computer
Science, Hiroshima, Japan, 2004. Springer Verlag.

[21] W.M.P. van der Aalst. Inheritance of
Interorganizational Workflos: How to agree without
loosing control? Information Technology and
Management Journal, 2(3):195–231, 2002.

[22] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web Services Composition
using SHOP2. In Proceedings of the Second
International Semantic Web Conference (ISWC2003),
2003.


